Topic Review
Mitochondrial Dynamics
Mitochondria are highly dynamic organelles that undergo morphological changes in order to adapt to cellular demands. These changes are orchestrated by the coordinated cycles of fusion and fission, referred to as mitochondrial dynamics, and dysregulation of these processes contributes to disease development. 
  • 535
  • 19 May 2021
Topic Review
Mitochondria-Targeting Probes
Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H2Sn, n > 1), and polysulfides (RSnR, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H2S) signaling. While most studies on sulfane sulfur detection have focused on sulfane sulfurs in the whole cell, increasing the recognition of the effects of reactive sulfur species on the functions of various subcellular organelles has emerged, such as mitochondria. This has driven a need for organelle-targeted detection methods.
  • 527
  • 08 Mar 2023
Topic Review
Mitochondria-Targeted Drug in Cardiovascular Disease
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field.
  • 1.4K
  • 03 Dec 2020
Topic Review
Mitigating Shuttle Effect in Lithium–Sulfur Batteries by Separators
Lithium–sulfur (Li-S) batteries are considered one of the most promising energy storage systems due to their high theoretical capacity, high theoretical capacity density, and low cost. However, challenges such as poor conductivity of sulfur (S) elements in active materials, the “shuttle effect” caused by lithium polysulfide, and the growth of lithium dendrites impede the commercial development of Li-S batteries. As a crucial component of the battery, the separator plays a vital role in mitigating the shuttle effect caused by polysulfide. Traditional polypropylene, polyethylene, and polyimide separators are constrained by their inherent limitations, rendering them unsuitable for direct application in lithium–sulfur batteries. Therefore, there is an urgent need for the development of novel separators. 
  • 387
  • 19 Dec 2023
Topic Review
MiRNA-Based Therapies in Pulmonary Hypertension
Pulmonary hypertension involves a continuous remodeling of the pulmonary vasculature, that is similar to cancer in some aspects due to the uncontrolled proliferation of certain cells. This leads to muscularization of pulmonary vessels, development of vascular lesions, continuous vasoconstriction, and final heart failure. Current pharmacological therapies only target three molecular pathways and as a result, patients can only improve their life quality but not without suffering adverse side effects. This fatal lung disease lacks effective treatments. Therefore, there are compelling reasons to find new molecular targets and novel therapies that reverse the development of the disease. In this context, miRNA-based therapies have shown promising results that will provided in the following text while explaining the important role that had played their nanoencapsulation.
  • 1.3K
  • 22 Apr 2021
Topic Review
MIPs Preparation by Computational Simulation–Aided
Molecularly imprinted polymers (MIP) are obtained by initiating the polymerization of functional monomers surrounding the template molecule in the presence of crosslinkers and porogens. Usually the best adsorption performance can be obtained by optimizing the polymerization conditions, but the process is time-consuming and labor-intensive. At the same time, the use of a large number of organic reagents in the process of experimental optimization also limits the development and promotion of molecular imprinting technology. Theoretical calculation based on calculation simulation and intermolecular force is an effective method to solve this problem because it is convenient, versatile, environmentally friendly and low in price. It is not affected by the space environment, and the calculation efficiency is high.
  • 778
  • 27 Aug 2021
Topic Review
MIP Application for the Detection of Infectious Diseases
Molecularly imprinted polymer (MIP)-based biosensors have enormous potential for disease detection. Infectious diseases can be detected and identified using MIPs, which are imprinted with whole viruses or specific proteins—biomarkers. Simple detection of the virus can be achieved by whole virus surface imprinting because viruses are easily identified by their morphology and surface properties. Other imprinting techniques and related sensitivity of the prepared MIP-based sensors are bulk imprinting, soft lithography, self-assembly, and the particle core-shell (template immobilization technique). Using MIP-based technology, viruses can be detected by a whole virus, as in the case of the Japanese encephalitis virus imprinted in the tetraethyl orthosilicate or hepatitis A virus imprinted in polydopamine (PDA), virus aptamer (e.g., HIV-1 gene imprinted in poly(o-phenylenediamine on ITO), main protein (e.g., spike protein or NS1 (non-structural protein 1—a specific and sensitive biomarker for dengue virus infection) or HIV-p24 (human immunodeficiency virus p24)), epitope (e.g., glycoprotein 41, gp41 (of related protein to human immunodeficiency virus type 1 (HIV-1))) templates. 
  • 355
  • 03 Jul 2023
Topic Review
MIP Application for the Detection of Cancer Biomarkers
Biomarkers can provide critical information about cancer and many other diseases; therefore, developing analytical systems for recognising biomarkers is an essential direction in bioanalytical chemistry. Molecularly imprinted polymers (MIPs) have been applied in analytical systems to determine biomarkers. The most attractive way to replace natural biological recognition systems is based on applying molecularly imprinted polymers.
  • 478
  • 24 Apr 2023
Topic Review
Miniaturized Microfluidic Electrochemical EBFC-SPBs
Electrochemical biosensors, in which enzymatic biofuel cells simultaneously work as energy power and signal generators, have become a research hotspot. They display the merits of power self-support, a simplified structure, in vivo operational feasibility, online and timely monitoring, etc. Since the concept of enzymatic biofuel cell-powered biosensors (EBFC-SPBs) was first proposed, its applications in health monitoring have scored tremendous achievements. 
  • 395
  • 09 Feb 2023
Topic Review
Mineralogy of Antimony Ores and Antimony Production
Antimony is a metalloid element having common oxidation states of 5+ and 3+. It is a lustrous silvery-white solid, which is quite brittle and exhibits a flaky texture.  Antimony is classified as a critical/strategic metal. Stibnite, jamesonite, and antimony-gold ores are the most common sources of antimony.
  • 944
  • 02 Sep 2022
  • Page
  • of
  • 467
ScholarVision Creations