Topic Review
Molecular Mechanisms of Exosomes
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses.
  • 357
  • 12 Apr 2023
Topic Review
Molecular Iodine-Catalyzed Reactions
Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar 31952, KSA; Email: bimalbanik10@gmail.com; bbanik@pmu.edu.sa In continuation of our research on the synthesis of diverse organic molecules, we report here molecular iodine-catalyzed diverse synthetic processes. These methods are efficient and produce products in high yield. The success of molecular iodine-catalyzed reactions depends on the release of hydroiodic acid in the reaction media.
  • 1.5K
  • 01 Jun 2020
Topic Review
Molecular Iodine Capture by Covalent Organic Frameworks
Covalent organic frameworks (COFs) are a class of extended crystalline porous polymers that possess unique architectures with high surface areas, long-range order, and permanent porosity. It is known that the possible radioactive iodine species in the environment are iodate (IO3−), molecular iodine (I2), and organic iodine species (e.g., methyl iodide (CH3I) and ethyl iodide (CH3CH2I)). Different iodine species need to be handled in different ways.
  • 637
  • 14 Feb 2023
Topic Review
Molecular Imprinting
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. 
  • 2.6K
  • 30 Nov 2021
Topic Review
Molecular Hybrids Targeting Tubulin Polymerization
Microtubules are cylindrical protein polymers formed from αβ-tubulin heterodimers in the cytoplasm of eukaryotic cells. Microtubule disturbance may cause cell cycle arrest in the G2/M phase, and anomalous mitotic spindles will form. Microtubules are an important target for cancer drug action because of their critical role in mitosis. Several microtubule-targeting agents with vast therapeutic advantages have been developed, but they often lead to multidrug resistance and adverse side effects. Thus, single-target therapy has drawbacks in the effective control of tubulin polymerization. Molecular hybridization, based on the amalgamation of two or more pharmacophores of bioactive conjugates to engender a single molecular structure with enhanced pharmacokinetics and biological activity, compared to their parent molecules, has recently become a promising approach in drug development. The practical application of combined active scaffolds targeting tubulin polymerization inhibitors has been corroborated in the past few years
  • 391
  • 12 Apr 2022
Topic Review
Molecular Hybridization of Alkaloids Using 1,2,3-Triazole-Based Click Chemistry
Alkaloids found in multiple species, known as ‘driver species’, are more likely to be included in early-stage drug development due to their high biodiversity compared to rare alkaloids. Many synthetic approaches have been employed to hybridize the natural alkaloids in drug development. Click chemistry is a highly efficient and versatile reaction targeting specific areas, making it a valuable tool for creating complex natural products and diverse molecular structures. It has been used to create hybrid alkaloids that address their limitations and serve as potential drugs that mimic natural products.
  • 495
  • 22 Nov 2023
Topic Review Peer Reviewed
Molecular Filters in Medicinal Chemistry
Efficient chemical library design for high-throughput virtual screening and drug design requires a pre-screening filter pipeline capable of labeling aggregators, pan-assay interference compounds (PAINS), and rapid elimination of swill (REOS); identifying or excluding covalent binders; flagging moieties with specific bio-evaluation data; and incorporating physicochemical and pharmacokinetic properties early in the design without compromising the diversity of chemical moieties present in the library. This adaptation of the chemical space results in greater enrichment of hit lists, identified compounds with greater potential for further optimization, and efficient use of computational time. A number of medicinal chemistry filters have been implemented in the Konstanz Information Miner (KNIME) software and analyzed their impact on testing representative libraries with chemoinformatic analysis. It was found that the analyzed filters can effectively tailor chemical libraries to a lead-like chemical space, identify protein–protein inhibitor-like compounds, prioritize oral bioavailability, identify drug-like compounds, and effectively label unwanted scaffolds or functional groups. However, one should be cautious in their application and carefully study the chemical space suitable for the target and general medicinal chemistry campaign, and review passed and labeled compounds before taking further in silico steps.
  • 672
  • 24 Apr 2023
Topic Review
Molecular Dynamics Simulations
Molecular dynamics (MD) is a simulation technique that aims at deriving statements about the structural, dynamical, and thermodynamical properties of a molecular system. MD simulations have become increasingly useful in the modern drug development process. For example, in the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. in the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
  • 2.0K
  • 20 Jan 2021
Topic Review
Molecular Dynamics Simulation Studies of Silicon Carbide Materials
Silicon carbide (SiC) materials are widely applied in the field of nuclear materials and semiconductor materials due to their excellent radiation resistance, thermal conductivity, oxidation resistance, and mechanical strength. The molecular dynamics (MD) simulation is an important method to study the properties, preparation, and performance of SiC materials. It has significant advantages at the atomic scale. 
  • 1.1K
  • 01 Feb 2023
Topic Review
Molecular Design of Porphyrin-Based Covalent Organic Frameworks
Chemical modification and self-assembly of molecules as well as constructing porphyrin-based metal (covalent) organic frameworks are often used to improve its solar light utilization and electron transfer rate. Especially porphyrin-based covalent organic frameworks (COFs) in which porphyrin molecules are connected by covalent bonds combine the structural advantages of organic frameworks with light-capturing properties of porphyrins and exhibit great potential in light-responsive materials. 
  • 463
  • 10 May 2023
  • Page
  • of
  • 467
ScholarVision Creations