Topic Review
Natural Polymeric Carbohydrate-Based Antibiofilm Materials
Natural biopolymers, especially carbohydrates, show excellent material properties, such as mechanical strength, plasticity, and biodegradability. In addition, the anionic charges of hydrophilic polysaccharides (such as sulfate polysaccharides, hyaluronic acid, etc.) allow ionic attraction with metal ions or organic salts, and thereby they achieve antibacterial material properties. These antibacterial materials can be used to make implants for biomedical use. However, in-vivo compatibility remains a major limitation of such polymeric materials. 
  • 480
  • 16 Aug 2022
Topic Review
Natural Polymer-Based Hydrogels for Glaucoma Therapy
Biopolymers have been extensively investigated in a number of medical fields, including tissue engineering and drug delivery. This is largely due to the fact that they are biodegradable within the body, and do not induce an inflammatory reaction. Polynucleotides such as nucleic acids (DNA and RNA), proteins such as polypeptides, and polyesters derived from both plants and animals are also used. When compared to synthetic polymers, naturally occurring biopolymers and their derivatives have acquired preference, and have a comprehensive range of applications in pharmaceutical as well as biomedical research. Natural biopolymers are preferred for medical applications due to their biodegradability, biostability, biocompatibility, and non-toxicity. Additionally, natural polymers have the advantage of being readily available, economically friendly, and ecofriendly. Hydrogels designed from natural polymers exhibit high potential as drug delivery systems for biomaterials to treat ocular impairments.
  • 515
  • 28 Jun 2022
Topic Review
Natural Polymer-Based Hydrogels
Hydrogels prepared from natural polymer have attracted extensive attention in biomedical fields such as drug delivery, wound healing, and regenerative medicine due to their good biocompatibility, degradability, and flexibility.
  • 292
  • 31 Oct 2023
Topic Review
Natural Phenols
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols’ anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity.
  • 3.4K
  • 29 Sep 2021
Topic Review
Natural Leaf Fiber
The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. 
  • 2.1K
  • 26 Apr 2021
Topic Review
Natural Fibre-Reinforced Polymer Composites
As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years.
  • 1.1K
  • 23 Jul 2021
Topic Review
Natural Fiber in Frictional Material of Brake Pads
Research into the use of eco-friendly materials, such as natural fibers, in brake pads has gained momentum. This can be attributed to the potential of natural fibers to replace traditional materials in tribological applications such as braking pads. The harmful impact of commonly-used brake pad materials, such as metal and mineral fibers, on human health and the environment, necessitates the development of eco-friendly alternatives. Natural fibers, such as banana peels, palm kernels, and palm slag, have been shown to be viable replacements for traditional brake pad materials.
  • 609
  • 23 Feb 2023
Topic Review
Natural Emulsion Stabilizers
Natural emulsion stabilizers are polymers of amino acid, nucleic acid, carbohydrate, etc., which are derived from microorganisms, bacteria, and other organic materials. Plant and animal proteins are basic sources of natural emulsion stabilizers. Pea protein-maltodextrin and lentil protein feature entrapment capacity up to 88%, (1–10% concentrated), zein proteins feature 74–89% entrapment efficiency, soy proteins in various concentrations increase dissolution, retention, and stability to the emulsion and whey proteins, egg proteins, and proteins from all other animals are applicable in membrane formation and encapsulation to stabilize emulsion/nanoemulsion. In pharmaceutical industries, phospholipids, phosphatidyl choline (PC), phosphatidyl ethanol-amine (PE), and phosphatidyl glycerol (PG)-based stabilizers are very effective as emulsion stabilizers. Lecithin (a combination of phospholipids) is used in the cosmetics and food industries. Various factors such as temperature, pH, droplets size, etc. destabilize the emulsion. Therefore, the emulsion stabilizers are used to stabilize, preserve and safely deliver the formulated drugs, also as a preservative in food and stabilizer in cosmetic products. Natural emulsion stabilizers offer great advantages because they are naturally degradable, ecologically effective, non-toxic, easily available in nature, non-carcinogenic, and not harmful to health.
  • 6.4K
  • 19 Jan 2022
Topic Review
Natural Disordered sp2 Carbon
The progress in the practical use of glassy carbon materials has led to a considerable interest in understanding the nature of their physical properties. The electrophysical properties are among the most demanded properties. In nature, in the course of geological processes, disordered sp2 carbon substances were formed, the structure of which is in many respects similar to the structure of glassy carbon and black carbon, and the electrical properties are distinguished by a high-energy storage potential and a high efficiency of shielding electromagnetic radiation.
  • 391
  • 18 Nov 2022
Topic Review
Natural Deep Eutectic Solvents for Sustainable Extraction Techniques
The analysis of foods is a comprehensive process of extraction, identification, and quantification of several classes of compounds from natural matrices. The detection and quantification of primary metabolites (sugars, amino acids, vitamins, and lipids), contaminants (toxins, heavy metals, and allergens), and secondary metabolites (polyphenolics, flavonoids, terpenes, and alkaloids) is a crucial practice for ensuring the safety and quality of foods and related functional products. Due to the variable structure of food analytes, a gap in a universal method suitable for the extraction and analysis of all compounds is lacking. Moreover, conventional extractants are usually made of organic solvents and common extraction techniques usually require a long extraction time to exhaust the matrix. The actual discussions about climatic changes provide a growing awareness of the scientific and industrial community to reduce the environmental impact by using sustainable processes. In general, the main principles of “green chemistry” are based on the design of processes aimed to reduce energy consumption and the use of eco-friendly solvents with less toxicity to the environment and human health.
  • 1.1K
  • 09 Jan 2023
  • Page
  • of
  • 467
ScholarVision Creations