Topic Review
Phototheranostics Using Erythrocyte-Based Particles
There has been a recent increase in the development of delivery systems based on red blood cells (RBCs) for light-mediated imaging and therapeutic applications. These constructs are able to take advantage of the immune evasion properties of the RBC, while the addition of an optical cargo allows the particles to be activated by light for a number of promising applications. 
  • 452
  • 24 May 2021
Topic Review
Photoswitchable Zirconium MOF
UiO-66-NH2 is a metal–organic framework (MOF), which is constructed of zirconium and amino-terephthalate ions. Modification of MOFs with photochromic compounds allows managing their gas capacity and directing sorption-desorption processes. Photochromic molecules are able to reverse their configuration under UV‐light irradiation affecting available pore volume. The modification of UiO‐66‐NH2 with diarylethene molecules (DAE, 4‐(5‐Methoxy‐1,2‐dimethyl‐1H‐indol‐3‐yl)‐3‐(2,5‐dimethylthiophen‐3‐yl)‐4‐furan‐2,5‐dione) results in the formation of new photoswitchable material for light-driven H2 storage. Most of the DAE molecules inside of the UiO‐66‐pores had an open conformation after synthesis. However, the equilibrium was able to be shifted further toward an open conformation using visible light irradiation with a wavelength of 520 nm. Conversely, UV‐light with a wavelength of 450 nm initiated the transformation of the photoresponsive moieties inside of the pores to a closed modification. We have shown that this transformation could be used to stimulate hydrogen adsorption–desorption processes. Specifically, visible light irradiation increased the H2 capacity of modified MOF, while UV‐light decreased it. A similar hybrid material with DAE moieties in the UiO‐66 scaffold was applied for hydrogen storage for the first time. Additionally, the obtained results are promising for smart H2 storage that is able to be managed via light stimuli.
  • 440
  • 02 Dec 2021
Topic Review
Photosensitized Silica Nanoparticles
BODIPY dyes have recently attracted attention as potential photosensitizers. Commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA).
  • 643
  • 08 Jul 2021
Topic Review
Photoresponsive Supramolecular Systems
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. Photoswitchable systems designed to catalyze chemical reactions must incorporate the appropriate photochromic units into the system to translate the structural switching states into a different chemical reactivity. 
  • 642
  • 01 Aug 2022
Topic Review
Photoresponsive Metal-Organic Frameworks
Metal-organic frameworks (MOFs) are a type of crystalline porous material having organic ligands connected to metal clusters. This type of material shows a terrific design adaptability due to the almost unlimited combinations of metallic salts and organic ligands. Several scientists have been attracted by this important part of reticular chemistry, probably due to the fact that the researcher’s inventiveness is the only limitation in this research field. Thus, different research groups have greatly contributed to the exponential growth of this area, using these materials in a diverse range of applications, including catalysis, water harvesting, biomedicine and sensing. The easy and remote switching of light makes this stimulus an ideal candidate for a large number of applications, among which the preparation of photoresponsive materials stands out. The interest of several scientists in this area in order to achieve improved functionalities has increased parallel to the growth of the structural complexity of these materials. Thus, metal-organic frameworks (MOFs) turned out to be ideal scaffolds for light-responsive ligands.
  • 663
  • 06 Jul 2022
Topic Review
Photoresponsive Biomaterials
Photoresponsive biomaterials have garnered increasing attention due to their ability to dynamically regulate biological interactions and cellular behaviors in response to light. Photoresponsive biomaterials are created by integrating photoresponsive molecules, such as spiropyrans, azobenzenes, hydrazones, and diarylethenes, into biomaterials like hydrogels, nanoparticles, or scaffolds. 
  • 429
  • 16 May 2023
Topic Review Peer Reviewed
Photoremovable Protecting Groups
Photoremovable protecting groups (PPGs) (also often called photocages in the literature) are used for temporary inactivation of biologically active substrates. By photoirradiation the PPG could be cleaved off and the biological activity could be restored on-demand, with a high spatiotemporal precision. The on-site liberation of the biologically active substrate could be exploited for studying dynamic biological processes or for designing targeted pharmacological interventions in vitro or in vivo. Several chemical scaffolds have been described and tested as PPGs, operating at different wavelengths. The scope of potential substrates is very broad, spanning from small molecules to proteins. In a wider context, PPGs could be used for the design of various light-responsive materials as well, for diverse applications. 
  • 428
  • 21 Oct 2022
Topic Review
Photoplethysmography Sensors
The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. 
  • 7.1K
  • 27 Apr 2021
Topic Review
Photonic Upconversion Materials for Organic Lanthanide Complexes
Organic lanthanide complexes have garnered significant attention in various fields due to their intriguing energy transfer mechanism, enabling the upconversion (UC) of two or more low-energy photons into high-energy photons. In comparison to lanthanide-doped inorganic nanoparticles, organic UC complexes hold great promise for biological delivery applications due to their advantageous properties of controllable size and composition.
  • 296
  • 31 Aug 2023
Topic Review
Photonic Sensing Devices
Photonic sensing devices have become increasingly important in various fields such as agriculture, medicine, biochemical sensing, and manufacturing. They are highly sensitive and can classify minor changes in the physical and chemical properties of the ambient medium with high precision. This makes them practical in applications where accurate measurements are critical, such as medical diagnostics and environmental monitoring. 
  • 390
  • 28 Jun 2023
  • Page
  • of
  • 467
ScholarVision Creations