Topic Review
Sol-Gel Technology
The commercial availability of inorganic/organic precursors for sol-gel formulations is very high and increases day by day. In textile applications, the precursor-synthesized sol-gels along with functional chemicals can be deposited onto textile fabrics in one step by rolling, padding, dip-coating, spraying or spin coating. By using this technology, it is possible to provide fabrics with functional/multi-functional characteristics including flame retardant, anti-mosquito, water- repellent, oil-repellent, anti-bacterial, anti-wrinkle, ultraviolet (UV) protection and self-cleaning properties. These surface properties are discussed, describing the history, basic chemistry, factors affecting the sol-gel synthesis, progress in sol-gel technology along with various parameters controlling sol-gel technology. Additionally, this review deals with the recent progress of sol-gel technology in textiles in addressing fabric finishing, water repellent textiles, oil/water separation, flame retardant, UV protection and self-cleaning, self-sterilizing, wrinkle resistance, heat storage, photochromic and thermochromic color changes and the improvement of the durability and wear resistance properties.
  • 1.3K
  • 05 May 2023
Topic Review
Diatoms
Diatoms have an ability that is unique among the unicellular photoautotrophic organisms to synthesize an intricately ornamented siliceous (biosilica) exoskeleton with an ordered, hierarchical, three-dimensional structure on a micro- to nanoscale. The unique morphological, structural, mechanical, transport, photonic, and optoelectronic properties of diatomaceous biosilica make it a desirable material for modern technologies. This review presents a summary and discussion of published research on the metabolic insertion of chemical elements with specific functional activity into diatom biosilica. Included in the review is research on innovation in methods of synthesis of a new generation of functional siliceous materials, where the synthesis process is “outsourced” to intelligent microorganisms, referred to here as microtechnologists, by providing them with appropriate conditions and reagents.
  • 1.3K
  • 27 Oct 2020
Topic Review
Chitosan Adsorbent
Chitin is mentioned as the second most abundant and important natural biopolymer in worldwide scale. The main sources for the extraction and exploitation of this natural polysaccharide polymer are crabs and shrimps. Chitosan (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) is the most important derivative of chitin and can be used in a wide variety of applications including cosmetics, pharmaceutical and biomedical applications, food, etc., giving this substance high value-added applications. Moreover, chitosan has applications in adsorption because it contains amino and hydroxyl groups in its molecules, and can thus contribute to many possible adsorption interactions between chitosan and pollutants (pharmaceuticals/drugs, metals, phenols, pesticides, etc.). However, it must be noted that one of the most important techniques of decontamination is considered to be adsorption because it is simple, low-cost, and fast. 
  • 1.3K
  • 01 Jun 2021
Topic Review
Barriers to Electric Vehicle Adoption in Thailand
Electric vehicles (EVs) are considered to be a solution for sustainable transportation. EVs can reduce fossil fuel consumption, greenhouse gas emissions, and the negative impacts of climate change and global warming, as well as help improve air quality.
  • 1.3K
  • 09 Dec 2021
Topic Review
Near-Infrared Spectrum of Olive Oils
Olive oil is regarded as one of the healthiest food oils due to its high content in triglycerides with unsaturated acids, mainly oleic acid, and its phenolic composition. The analysis of the physico-chemical parameters of quality of olive oil is still carried out in laboratories using chemicals and generating waste, which is relatively costly and time-consuming. Among the various alternatives for the online or on-site measurement of these parameters, the available literature highlights the use of near-infrared spectroscopy (NIRS). 
  • 1.3K
  • 18 Apr 2022
Topic Review
Cocona Fruits from the Peruvian Amazon
Cocona fruits are a popular food and medicinal fruit used mainly in the Amazon and several countries of South America for the preparation of several food products such as drinks, jams and milk shakes. In this study five ecotypes of cocona native to Peru have been studied regarding their nutritional and antioxidants values plus antihyperlipidemic activities.
  • 1.3K
  • 29 Mar 2022
Topic Review
Chemistry and Occurrence of Tropane Alkaloids in Foods
Tropane alkaloids (TAs) are natural toxins produced by different plants, mainly from the Solanaceae family. 
  • 1.3K
  • 08 Feb 2022
Topic Review
Cellulose Derivatives-Based Dressings for Wound-Healing Management
Notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
  • 1.3K
  • 29 Mar 2022
Topic Review
Hydrogen Bond
The hydrogen bond may be treated as a local stabilizing interaction that acts between the proton or the electron charge deficient region of hydrogen centre and the electron rich region that is related to one or more centres. This may be named as the two-sites hydrogen bond definition. However in numerous studies the A-H proton donating bond with the positively charged H-atom and the proton acceptor, say B, being the electron rich centre are taken into account. Thus so-called A-H∙∙∙B hydrogen bridges are often considered. In such a way the three-sites hydrogen bond definition may be proposed that the hydrogen bond is the A-H∙∙∙B local stabilizing system with the proton situated between two A and B electron rich sites, most often closer to one of them, forming the A-H covalent bond; both A and B may correspond to one or more atomic centres.
  • 1.3K
  • 07 Sep 2021
Topic Review
Additive Manufacturing Processes Classification
Additive manufacturing is an important and promising process of manufacturing due to its increasing demand in all industrial sectors, with special relevance in those related to metallic components since it permits the lightening of structures, producing complex geometries with a minimum waste of material. There are different techniques involved in additive manufacturing that must be carefully selected according to the chemical composition of the material and the final requirements.
  • 1.3K
  • 10 Mar 2023
  • Page
  • of
  • 467
ScholarVision Creations