Topic Review
Sol-gel Technology for Commercial Coatings
The commercial availability of inorganic/organic precursors for sol-gel formulation is very high and increase day by day. By using the sol-gel technology, it is possible to provide materials with functional/multi-functional characteristics including flame retardant, anti-mosquito, water-repellent oil-repellent, anti-bacterial, anti-wrinkle, ultraviolet (UV) protection, self-cleaning and other properties. Some of these properties are discussed here, describing basic chemistry, factors affecting the sol-gel process, as well as progress and parameters controlling sol-gel technology for thin coatings.
  • 2.0K
  • 29 Apr 2021
Topic Review
FDA Approved Antibody-Drug Conjugates
Antibody-drug conjugate (ADC) are now amongst the fastest growing drug classes in oncology, as they combine the best features of mAbs and small molecule drugs, creating a single moiety that is highly specific and cytotoxic.
  • 2.0K
  • 16 Nov 2021
Topic Review
Covalent Organic Framework (COFs)
Covalent organic frameworks (COFs) are 2D or 3D low density crystalline porous materials with periodically ordered skeletons constituted by organic molecules linked through covalent bonds. They were first reported by Yaghi and collaborators in 2005 from condensation of benzenediboronic acid (BDBA) alone and in the presence of hexahydroxytriphenylene (HHTP) in a simple one-pot procedure at 120 °C, obtaining a boroxine COF (COF-1) and a boronate ester COF (COF-5), respectively. Since then, there has been steady growth in the number of published works dealing with the synthesis, properties, and catalytic applications of COFs.
  • 2.0K
  • 23 Nov 2021
Topic Review
Orange Peel Boards
The Orange Peel Board is a panel made by mixture of different proportions dried peels and wet peels. The commonly used processing method is thermo-pressing.  
  • 2.0K
  • 19 Jul 2021
Topic Review
Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance
Antimicrobial resistance (AMR) has become an alarming threat to the successful treatment of rapidly growing bacterial infections because of the abuse and misuse of antibiotics. Traditional antibiotics bear many limitations including restricted bioavailability, inadequate penetration and the emergence of antimicrobial-resistant microorganisms. Recent advances in nanotechnology for the introduction of nanoparticles with fascinating physicochemical characteristics have been predicted as an innovative means of defence against antimicrobial-resistant diseases. The use of nanoparticles renders several benefits including improved tissue targeting, better solubility, improved stability, enhanced epithelial permeability and minimal side effects.
  • 2.0K
  • 07 Feb 2024
Topic Review
Fundamental Concepts of Hydrogels
Hydrogels are three-dimensional crosslinked porous networks and can be synthesized from natural polymers, synthetic polymers, polymerizable synthetic monomers, and combination of natural and synthetic polymers. Synthesis of hydrogels involves physical, chemical and hybrid bonding. The bonding is formed via different routes such as solution casting, solution mixing, bulk polymerization, free radical mechanism, radiation method, and interpenetrating network formation. The synthesized hydrogels have significant properties such as mechanical strength, flexibility, biocompatibility, biodegradability, swellability, and stimuli sensitivity. Furthermore, owing to the smart and aqueous medium, robust mechanical strength, adhesiveness, stretchability, strain sensitivity, and self-healability, hydrogels can be potentially used in biomedical, electrochemical, sensors, contact lens, and soft robotic applications.
  • 2.0K
  • 03 Dec 2020
Topic Review
Nanomaterials Combined with Bacteriocins
Bacteriocins are antimicrobial peptides or proteinaceous materials produced by bacteria against pathogens. These molecules have high efficiency and specificity and are equipped with many properties useful in food-related applications, such as food preservatives and additives, as well as biomedical applications, such as serving as alternatives to current antibacterial, antiviral, anti-cancer, and antibiofilm agents. Despite their advantages as alternative therapeutics over existing strategies, several limitations of bacteriocins, such as the high cost of isolation and purification, narrow spectrum of activity, low stability and solubility, and easy enzymatic degradation, need to be improved. Nanomaterials are promising agents in many biological applications. They are widely used in the conjugation or decoration of bacteriocins to augment the activity of bacterioc-ins or reduce problems related to their use in biomedical applications. Therefore, bacteriocins combined with nanomaterials have emerged as promising molecules that can be used in various biomedical applications.
  • 2.0K
  • 11 Oct 2021
Topic Review
SLMed Magnesium Alloys
The selective laser melting(SLM) technology has the characteristics of rapid solidification.Therefore, refined microstructures and high-performance products can be obtained.The microstructure of magnesium alloy varies with the cooling rate(processing).And the higher the cooling rate, the finer the microstructure of the magnesium alloy.Different cooling rates also affect the phase composition of magnesium alloys. The SLM process inhibits the formation of the second phase in the magnesium alloy due to the characteristics of rapid solidification.Post-treatment processes, such as heat treatment and hot isostatic pressing(HIP), can be applied to SLMed magnesium alloys. These processes help to close the pores , dissolve the second phase and reduce the source of cracks caused by the mismatch between the second phase and the α-Mg matrix, thereby improving the  mechanical properties of the magnesium alloy, especially the elongation.However, SLMed magnesium alloys need further research in the application of post-processing, alloy design, base material purification, and thermodynamic and kinetic theoretical calculations of intermetallic compounds.
  • 2.0K
  • 19 Aug 2020
Topic Review
Polymers Modifications through Ultraviolet Absorbers Addition
The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperoxide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter the color of polymers.
  • 2.0K
  • 10 Jan 2022
Topic Review
The Phosphorus Bond
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. 
  • 2.0K
  • 07 Mar 2022
  • Page
  • of
  • 467
Video Production Service