Topic Review
Biomedical Application of Silk-Based Cryogels
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. 
  • 549
  • 04 Jan 2023
Topic Review
Additive Manufacturing (AM)
AM is one technique which can be used to enhance the heat transfer rates of heat-exchanging devices and preserve the large sums of energy that are wasted from generated entropy and exergy.
  • 548
  • 22 Jan 2021
Topic Review
Printable Hydrogels
The hydrogel is a hydrophilic scaffold composed of covalent and non-covalent polymeric chains bonds, providing a 3D shape environment similar to the native extra-cellular matrix (ECM).
  • 548
  • 18 Mar 2021
Topic Review
Porous Silicon Optical Devices
The cost-effective fabrication process, the high internal surface area, the tunable pore size, and the photonic properties made the PSi an appealing transducing substrate for biosensing purposes, with applications in different research fields. Different optical PSi biosensors are reviewed and classified into four classes, based on the different biorecognition elements immobilized on the surface of the transducing material. 
  • 548
  • 24 Mar 2021
Topic Review
Nanomaterial Shape Influence on Cells
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. It has been revealed that the shape of the nanomaterial plays a crucial role. This entry reviews the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism.  
  • 548
  • 26 May 2021
Topic Review
Atomic Carbon
Atomic carbon, systematically named carbon and λ0-methane, also called monocarbon, is a colourless gaseous inorganic chemical with the chemical formula C (also written [C]). It is kinetically unstable at ambient temperature and pressure, being removed through autopolymerisation. Atomic carbon is the simplest form of carbon, and is also the progenitor of carbon clusters. In addition, it may be considered to be the monomer of all (condensed) carbon allotropes like graphite and diamond.
  • 548
  • 28 Sep 2022
Topic Review
Application of Supercritical Fluids in COVID-19
Even though years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. There are three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization. The supercritical fluids micronization techniques can help to improve the aqueous solubility and oral bioavailability of drugs, and consequently, the need for lower doses to elicit the same pharmacological effects can result in the reduction in the dose administered and adverse effects. In addition, micronization between 1 and 5 µm can aid in the manufacturing of pulmonary formulations to target the drug directly to the lung. Supercritical fluids also have enormous potential in the extraction of natural bioactive compounds, which have shown remarkable efficacy against COVID-19. Finally, the successful application of supercritical fluids in the inactivation of viruses opens up an opportunity for their application in drug sterilization and in the healthcare field.
  • 548
  • 29 Nov 2022
Topic Review Peer Reviewed
Magnetite Nanoparticles for Biomedical Applications
Magnetic nanoparticles (MNPs) have great potential in various areas such as medicine, cancer therapy and diagnostics, biosensing, and material science. In particular, magnetite (Fe3O4) nanoparticles are extensively used for numerous bioapplications due to their biocompatibility, high saturation magnetization, chemical stability, large surface area, and easy functionalization. This paper describes magnetic nanoparticle physical and biological properties, emphasizing synthesis approaches, toxicity, and various biomedical applications, focusing on the most recent advancements in the areas of therapy, diagnostics, theranostics, magnetic separation, and biosensing.
  • 548
  • 01 Dec 2022
Topic Review
Carbon Materials as Cathode for Dual-Carbon Lithium-Ion Capacitors
Lithium-ion capacitors (LICs) have drawn increasing attention, due to their appealing potential for bridging the performance gap between lithium-ion batteries and supercapacitors. Especially, dual-carbon lithium-ion capacitors (DC-LICs) are even more attractive because of the low cost, high conductivity, and tunable nanostructure/surface chemistry/composition, as well as excellent chemical/electrochemical stability of carbon materials. Based on the well-matched capacity and rate between the cathode and anode, DC-LICs show superior electrochemical performances over traditional LICs and are considered to be one of the most promising alternatives to the current energy storage devices. The mismatch between the cathode and anode could be further suppressed by applying carbon nanomaterials. 
  • 548
  • 06 Dec 2022
Topic Review
Polyurea in Impact Penetration Resistance and Blast Mitigation
Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. 
  • 548
  • 11 Mar 2024
  • Page
  • of
  • 467
ScholarVision Creations