Topic Review
Titanium Dioxide-Derived Materials with Superwettability
Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Generally, superwettability refers to superhydrophilic, superhydrophobic, superamphiphilic, and superamphiphobic surfaces; the mechanism of the superwettability property can be explained based on the surface structure of materials, surface molecules, and external influencing factors. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. 
  • 627
  • 14 Apr 2021
Topic Review
Stress Corrosion Cracking in APS-Glasses
Stress corrosion cracking is a well-known phenomenon in oxide glasses. However, how amorphous phase separation (APS) alters stress corrosion cracking, and the overall mechanical response of an oxide glass is less known in literature. APS is a dominant feature concerning many multicomponent systems, particularly the ternary sodium borosilicate (SBN) glass systems.
  • 627
  • 16 Aug 2021
Topic Review
Conductive Polymers in Infarction Repair
The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. 
  • 627
  • 29 Mar 2022
Topic Review
RNA-Based Nano-Theranostic Approaches for Cancer Management
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer.
  • 627
  • 15 Dec 2021
Topic Review
Design of Liquid-Crystalline Elastomeric Fluorescent Force Sensors
Liquid single crystal elastomers (LSCEs) containing carbazole fluorogenic components alter their luminescence when they are stretched along the director direction. The differential luminescent behavior arises from the distinct interaction between the carbazole fluorophores and their local environment before and after the application of the mechanical input. Indeed, the uniaxial deformation of the material, along its anisotropic direction, forces a closer mesogen–fluorophore interaction, which leads to the quenching of the carbazole luminescence. Importantly, this intermolecular interaction is intimately related to the intrinsic order present in the LSCE. As a result, the amount of light emitted by the material in the form of fluorescence diminishes upon deformation. Thus, the application of mechanical stimuli to liquid-crystalline elastomers furnishes to two interconvertible states for the system with distinct optical properties (with either different emission color or fluorescence intensity). The initial state of the material is completely restored once the applied force is removed. In this way, this kind of macromolecular system can transduce mechanical events into detectable and processable optical signals, thus, having great potential as optical force sensors. In this context, the realization of the distinct structural factors that govern the interactions established between the mesogenic and fluorogenic units at the supramolecular level upon deformation is essential for the development of efficient LSCE-based force sensors. In fact, not only the density of carbazole units and their connection to the main polymer backbone, but also the presence of long range molecular order in the system and the type of mesophase exhibited by the LSCE are key factors for the conception of efficient force sensors based on these self-organized polymer networks.
  • 627
  • 20 Dec 2021
Topic Review
Hot-Melt Adhesive Composition
Hot-melt adhesives (HMAs) are thermoplastic materials that can bond various substrates by solidifying rapidly upon cooling from the molten state, and their modification with organosilicon compounds can result in crosslinking behavior, characteristic of gels. Organosilicon compounds are hybrid molecules that have both inorganic and organic components and can enhance the properties and performance of HMAs.
  • 627
  • 20 Sep 2023
Topic Review
Photonic Crystals-based Plasmonic Photocatalysts
Plasmonic photocatalysts, noble-metal (NM)-modified wide-bandgap semiconductors with activity under visible-light (vis) irradiation, due to localized surface plasmon resonance (LSPR), have been intensively investigated over the last few years as efficient materials for environmental purification and energy conversion. However, the low quantum yields of photocatalytic reactions under vis irradiation, resulting from fast charge carriers' recombination, must be overcome for possible commercialization. Accordingly, the morphology design of plasmonic photocatalysts for efficient light harvesting has been proposed by using wide-bandgap semiconductors in the form of photonic crystals (PCs). 
  • 626
  • 02 Nov 2020
Topic Review
Mycomedicine
Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc.
  • 626
  • 27 Mar 2021
Topic Review
Magnetic Nanoparticles for Diagnosis
Magnetic nanoparticles gained considerable attention in last few years due to their remarkable properties. Superparamaganetism, non-toxicity, biocompatibility, chemical inertness, and environmental friendliness are some of the properties that make iron oxide nanoparticles (IONPs) an ideal choice for biomedical applications. Along with being easily tuneable and a tailored surface for conjugation of IONPs, their physio-chemical and biological properties can also be varied by modifying the basic parameters for synthesis that enhances the additional possibilities for designing novel magnetic nanomaterial for theranostic applications.
  • 626
  • 17 May 2021
Topic Review
Regenerative Medicine
The use of biological templates for the suitable growth of adipose-derived mesenchymal stem cells (AD-MSC) and “neo-tissue” construction has exponentially increased over the last years. The bioengineered scaffolds still have a prominent and biocompatible framework playing a role in tissue regeneration. In order to supply AD-MSCs, biomaterials, as the stem cell niche, are more often supplemented by or stimulate molecular signals that allow differentiation events into several strains, besides their secretion of cytokines and effects of immunomodulation. This systematic review aims to highlight the details of the integration of several types of biomaterials used in association with AD-MSCs, collecting notorious and basic data of in vitro and in vivo assays, taking into account the relevance of the interference of the cell lineage origin and handling cell line protocols for both the replacement and repairing of damaged tissues or organs in clinical application. Our group analyzed the quality and results of the 98 articles selected from PubMed, Scopus and Web of Science. A total of 97% of the articles retrieved demonstrated the potential in clinical applications. The synthetic polymers were the most used biomaterials associated with AD-MSCs and almost half of the selected articles were applied on bone regeneration.
  • 626
  • 22 Sep 2021
  • Page
  • of
  • 467
ScholarVision Creations