Topic Review Peer Reviewed
Molecular Filters in Medicinal Chemistry
Efficient chemical library design for high-throughput virtual screening and drug design requires a pre-screening filter pipeline capable of labeling aggregators, pan-assay interference compounds (PAINS), and rapid elimination of swill (REOS); identifying or excluding covalent binders; flagging moieties with specific bio-evaluation data; and incorporating physicochemical and pharmacokinetic properties early in the design without compromising the diversity of chemical moieties present in the library. This adaptation of the chemical space results in greater enrichment of hit lists, identified compounds with greater potential for further optimization, and efficient use of computational time. A number of medicinal chemistry filters have been implemented in the Konstanz Information Miner (KNIME) software and analyzed their impact on testing representative libraries with chemoinformatic analysis. It was found that the analyzed filters can effectively tailor chemical libraries to a lead-like chemical space, identify protein–protein inhibitor-like compounds, prioritize oral bioavailability, identify drug-like compounds, and effectively label unwanted scaffolds or functional groups. However, one should be cautious in their application and carefully study the chemical space suitable for the target and general medicinal chemistry campaign, and review passed and labeled compounds before taking further in silico steps.
  • 674
  • 24 Apr 2023
Topic Review
DNA Origami Nanostructures
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson–Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. 
  • 675
  • 08 May 2023
Topic Review
Aromatic Nitroderivatives
Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. 
  • 674
  • 28 May 2021
Topic Review
Redox-Active Metal Ions
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters.
  • 674
  • 06 Aug 2021
Topic Review
Antiviral Fullerene
Fullerenes were discovered in 1985. They are spherical or ellipsoidal in shape, with hollow cage structures. Fullerene C60, the representative fullerene, is ~0.7 nm in diameter. Three discoverers of fullerene C60 won the Nobel Prize in chemistry in 1996. With the continuous development of fullerene preparation technology, fullerenes have presented unprecedented opportunities in the field of biomedicine. For some common virus, such as human immunodeficiency virus (HIV), herpes simplex virus (HSV), cytomegalovirus (CMV), influenza, Ebola and so on, fullerene and their derivatives exhibit high levels of antiviral activity, inhibiting virus replication in vitro and in vivo. Unlike traditional small molecules, fullerene is a type of promising antiviral nanodrug. 
  • 674
  • 08 Aug 2022
Topic Review
Chitosan-Based Biomimetically Mineralized Composite Materials
Chitosan-Based Biomimetically Mineralized Composite Materials is a kind of  organic-inorganic composite materials fabricated by biomimetic mineralization technology using chitosan as a organic scaffold or template.
  • 673
  • 18 Nov 2020
Topic Review
Fabrication-4D-Printed Shape Memory Polymers
Additive manufacturing (AM) is the process through which components/structures are produced layer-by-layer. In this context, 4D printing combines 3D printing with time so that this combination results in additively manufactured components that respond to external stimuli and, consequently, change their shape/volume or modify their mechanical properties. Therefore, 4D printing uses shape-memory materials that react to external stimuli such as pH, humidity, and temperature. Among the possible materials with shape memory effect (SME), the most suitable for additive manufacturing are shape memory polymers (SMPs).
  • 673
  • 27 Apr 2021
Topic Review
Milled Dental Surface Integrity
Surface integrity is a multiphysics (biological, mechanical, optical, chemical, esthetic, etc.) and multiscale (from nm to mm) concept. It is defined as the residual signature left on the surface by the manufacturing or post-treatment process and permits correlating the process with the expected surface functionalities. Thanks to the advances made in mechanical engineering, the concept of surface integrity has been transposed to dentistry and oral science. The surface integrity concept transposed to fixed dental prostheses is presented in this article. The main components of surface integrity and their correlations within the triptych of surface integrity–process–clinical functionalities are presented.
  • 673
  • 31 May 2021
Topic Review
M13 Bacteriophage-Based Biosensors
New virus-based sensor systems that operate on M13 bacteriophage infrastructure have attracted considerable attention. These systems can detect a range of chemicals with excellent sensitivity and selectivity. Filaments consistent with M13 bacteriophages can be ordered by highly established forms of self-assembly. This allows M13 bacteriophages to build a homogeneous distribution and infiltrate the network structure of nanostructures under mild conditions.
  • 673
  • 07 Jun 2021
Topic Review
Bioethanol production by enzymatic hydrolysis
Lignocellulosic sources are the world’s largest renewable sources for bioethanol production and can be divided into three main types: (1) marine algae, (2) agricultural residues and municipal solid wastes, (3) and forest woody feedstocks.
  • 673
  • 19 Jul 2021
  • Page
  • of
  • 467
ScholarVision Creations