Topic Review
Types of Scaffolds in Cartilage Regeneration
There are two main types of scaffolds: natural polymers and synthetic polymers. On the one hand, natural polymers are proteins (e.g., collagen, SF) and polysaccharides (e.g., Alg, CS, and HA derivatives). Natural polymers already have a long history of application in wound treatment. They are the closest substances to human tissue and show biocompatibility and biodegradability without toxic byproducts, and their technologies and properties have been widely investigated. Furthermore, in the form of hydrogels, they can retain a great amount of water. However, natural polymers are normally poor in mechanical strength. On the other hand, synthetic polymers have different properties. They allow the better control of formation, surface morphology, mechanical strength and physicochemical properties than natural polymers. Among them, poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL) and poly(urethanes) (PU) are the most popular candidates in osteochondral regeneration. The limitations of synthetic polymers are poor hydrophilicity, proinflammatory degradation byproducts, and unmatched degradation rates. It is noticeable that these two types of polymers are not independent.
  • 742
  • 08 Sep 2022
Topic Review
Hydrophilic Modification of Dialysis Membranes
The dialyzer is the core element in the hemodialysis treatment of patients with end-stage kidney disease (ESKD). During hemodialysis treatment, the dialyzer replaces the function of the kidney by removing small and middle-molecular weight uremic toxins, while retaining essential proteins. Meanwhile, a dialyzer should have the best possible hemocompatibility profile as the perpetuated contact of blood with artificial surfaces triggers complement activation, coagulation and immune cell activation, and even low-level activation repeated chronically over years may lead to undesired effects. During hemodialysis, the adsorption of plasma proteins to the dialyzer membrane leads to a formation of a secondary membrane, which can compromise both the uremic toxin removal and hemocompatibility of the dialyzer. Hydrophilic modifications of novel dialysis membranes have been shown to reduce protein adsorption, leading to better hemocompatibility profile and performance stability during dialysis treatments.
  • 742
  • 07 Nov 2022
Topic Review
Shoppers Investigated by FTIR Spectroscopy
In the recent years, plastic-based shopping bags have become irregular and progressively replaced by compostable ones. To be marketed, these “new plastics” must possess suitable requirements verified by specific bodies, which grant the conformity mark, and the approved physicochemical properties are periodically verified. The fast, inexpensive, non-destructive, easy to use, and reproducible Fourier-Transform infrared (FTIR) spectroscopy is a technique routinely applied to perform analysis in various industrial sectors. To get reliable information from spectral data, chemometric methods, such as Principal Component Analysis (PCA), are commonly suggested. In this context, PCA was herein performed on 4, 5, and 21 × 3251 matrices, collecting the FTIR data from regular and irregular shopping bags, including three freshly extruded films from the Italian industry MecPlast, to predict their compliance with legislation. The results allowed us to unequivocally achieve such information and to classify the bags as suitable for containing fresh food in bulk or only for transport. A self-validated linear model was developed capable to estimate, by acquiring a single FTIR spectrum if, after the productive process, the content of renewable poly-lactic-acid (PLA) in a new produced film respect the expectations. Surprisingly, our findings established that among the grocery bags available on the market, irregular plastic-based shopping bags continue to survive.
  • 741
  • 12 Jan 2021
Topic Review
Pillararenes Trimer for Self-Assembly
Pillararenes trimer with particularly designed structural geometry and excellent capacity of recognizing guest molecules is a very efficient and attractive building block for the fabrication of advanced self-assembled materials. Pillararenes trimers could be prepared via both covalent and noncovalent bonds. The classic organic synthesis reactions such as click reaction, Palladium-catalyzed coupling reaction, amidation, esterification and aminolysis are employed to build covalent bonds and integrate three pieces of pillararenes subunits together into the “star-shaped” trimers and linear foldamers. Alternatively, pillararenes trimers could also be assembled in the form of host-guest inclusions and mechanically interlocked molecules via noncovalent interactions, and during those procedures, pillararenes units contribute the cavity for recognizing guest molecules and act as a “wheel” subunit, respectively. By fully utilizing the driving forces such as host-guest interactions, charge transfer, hydrophobic, hydrogen bonding, C—H…π and π—π stacking interactions, pillararenes trimers-based supramolecular self-assemblies provide a possibility in the construction of multi-dimensional materials such as vesicular and tubular aggregates, layered networks, as well as frameworks. Interestingly, those assembled materials exhibit interesting external stimuli responsiveness to e.g., variable concentrations, changed pH values, different temperature, as well as the addition/removal of competition guests and ions. Thus, they could further be used for diverse applications such as detection, sorption and separation of significant multi-analytes including metal cations, anions and amino acids.
  • 741
  • 29 Oct 2020
Topic Review
Chitosan as a Biomaterial
Chitosan remarkable properties have aroused the interest of applying this material in several biomedical applications, such as tissue engineering, wound dressing, drug delivery, and cancer treatment, what has aroused the interest of this review to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications.
  • 741
  • 25 Nov 2020
Topic Review
Immunomodulating Hydrogels for Drug Delivery Applications
One of the most concerning issues with conventional drug delivery platforms is the elicitation of an immune response upon implantation. Different natural and artificial platforms have been used for various biomedical applications ranging from drug and metabolite delivery, gene delivery, and wound healing/regenerative applications. However, most of these platforms suffer due to a compromise on immunogenicity and their respective biomedical applications. Although hydrogels from biomaterials of different origins have shown great promise in various biomedical applications, their immunogenicity, however small, is still a matter of concern, thus preventing their widespread clinical adoption. Hydrogels have been proposed as an excellent platform for various applications in drug delivery and regenerative medicine. Hydrogels are soft, tridimensional crosslinked networks of polymers with a high-water content, similar to the percentage found in human tissue.
  • 741
  • 04 Nov 2022
Topic Review
Lignocellulosic Materials for the Biofuels, Biochemicals and Biomaterials
It is well known that with the increasing issues of climate change, waste management and unstoppable resource exhaustion, politics and research efforts need to be combined in the search for new materials and sources that can replace fossil fuels and non-renewable resources currently in use, which besides generally include hazardous/toxic manufacture protocols and problematic end-of-life. It is at this point that lignocellulosic sources can play a fundamental role as a consequence of their natural origin, ubiquitous production all over the world, minimum carbon footprint and the interesting properties of their main components.
  • 741
  • 20 May 2022
Topic Review
Fluorescent Chemosensors Based on Polyamine Ligands
Polyamine ligands are water-soluble receptors that are able to coordinate, depending on their protonation degree, either metal ions, anionic, or neutral species. Furthermore, the presence of fluorescent signaling units allows an immediate visual response/signal. For these reasons, they can find applications in a wide variety of fields, mainly those where aqueous media is necessary, such as biological studies, wastewater analysis, soil contamination, etc.
  • 740
  • 29 Dec 2021
Topic Review
Anti-Caries Nanomaterials
Caries is the most common and extensive oral chronic disease. Due to the lack of anti-caries properties, traditional caries filling materials can easily cause secondary caries and lead to treatment failure. Nanomaterials can interfere with the bacteria metabolism, inhibit the formation of biofilm, reduce demineralization, and promote remineralization, which is expected to be an effective strategy for caries management. 
  • 740
  • 14 Jan 2021
Topic Review
Platinum Based Cytostatic Drugs
Platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products. 
  • 740
  • 19 Apr 2022
  • Page
  • of
  • 467
ScholarVision Creations