Topic Review
Uranyl Carbonate Minerals
Uranyl carbonates are one of the largest groups of secondary uranium(VI)-bearing natural phases being represented by 40 minerals approved by the International Mineralogical Association, overtaken only by uranyl phosphates and uranyl sulfates. Uranyl carbonate phases form during the direct alteration of primary U ores on contact with groundwaters enriched by CO2, thus playing an important role in the release of U to the environment. The presence of uranyl carbonate phases has also been detected on the surface of “lavas” that were formed during the Chernobyl accident.
  • 936
  • 24 Jun 2021
Topic Review
Low-Temperature SCR Catalyst Development
In recent years, low-temperature SCR (Selective Catalytic Reduction) denitrification technology has been popularized in non-power industries and has played an important role in the control of industrial flue gas NOx emissions in China. Currently, the most commonly used catalysts in industry are V2O5-WO3(MoO3)/TiO2, MnO2-based catalysts, CeO2-based catalysts, MnO2-CeO2 catalysts and zeolite SCR catalysts. The flue gas emitted during industrial combustion usually contains SO2, moisture and alkali metals, which can affect the service life of SCR catalysts.
  • 936
  • 31 Mar 2022
Topic Review
Cellulosic Ethanol Commercialization
Cellulosic ethanol commercialization is the process of building an industry out of methods of turning cellulose-containing organic matter into cellulosic ethanol for use as a biofuel. Companies, such as Iogen, POET, DuPont, and Abengoa, are building refineries that can process biomass and turn it into bioethanol. Companies, such as Diversa, Novozymes, and Dyadic, are producing enzymes that could enable a cellulosic ethanol future. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors. As of 2013, the first commercial-scale plants to produce cellulosic biofuels have begun operating. Multiple pathways for the conversion of different biofuel feedstocks are being used. In the next few years, the cost data of these technologies operating at commercial scale, and their relative performance, will become available. Lessons learnt will lower the costs of the industrial processes involved.
  • 935
  • 26 Oct 2022
Topic Review
Palladium-Catalyzed Carboxylation Reactions
The efficient incorporation of carbon dioxide into an organic substrate (carboxylation) under catalytic conditions to give high value added molecules is one of the most important and fascinating areas of current organic synthesis. Carbon dioxide is a nonflammable, inexpensive and largely available C-1 feedstock. In fact, it allows converting an important waste (it is well known that carbon dioxide is produced in enormous amounts from the combustion of fossil fuels for the production of energy) into a variety of useful compounds, which can find application as fuels or in the pharmaceutical or material fields.
  • 935
  • 06 Jan 2022
Topic Review
Classification of Lindane Based on the Isomeric Form
Hexachlorocyclohexane (HCH) is an artificial organic pollutant also called hexachlorane. It has eight isomeric forms, but of these eight isomeric forms, four α, -β, -γ, and δ-HCHs are the most prevalent. From this compound, γ-HCH (also known as lindane) is the most constant and commonly used compound, and it is the supreme isomer. Lindane is a broad-spectrum chlorinated insecticide that has a mixture of several chemical forms of HCH and is written as γ-Hexachlorocyclohexane or γ-HCH. Organic pollutants are normally pesticides, insecticides, or fertilizer, but HCH is an insecticide that is used on fruits, plants, and animals. Lindane is one of the earliest generations of chlorinated organic insecticides, appearing shortly after the end of World War II. All of the pollutants have the same physical and chemical properties. Therefore, it has also had PBT (Persistent, Bioaccumulative, and Toxic) properties.
  • 934
  • 18 Jul 2022
Topic Review Video
Physicochemical Processes Leading to Plasma-Driven Solution Electrolysis
A new type of electrolysis, initially known as the contact glow-discharge electrolysis (CGDE) and, more recently, as the plasma-driven solution electrolysis (PDSE), has attracted attention as an alternative method of hydrogen production. PDSE is a nontypical electrochemical process in which electric plasma is formed in the glow discharges excited by the direct or pulsed current in a gas–vapor envelope in the vicinity of the discharge electrode immersed in the electrolytic solution. The yield of chemicals in PDSE (i.e., the ratio of the moles of the product formed to the moles of electrons consumed in a chemical reaction) is several times higher than the Faradaic production of chemicals (predicted by Faraday’s law). In PDSE, new chemical compounds can also be synthesized, which does not happen using Faradaic electrolysis.
  • 934
  • 31 Oct 2022
Topic Review
Adsorption of Pesticides onto Clay Minerals
Adsorption of pesticides onto natural clay mineral relies on the use of adsorbents with minimal treatment beyond their preparation to provide a narrow size distribution and homoionic form by exchanging the naturally occurring interlamellar cations (in the case of smectites) by some alkaline (Na+ or K+) or alkaline earth (Ca2+or Mg2+) cation. Additional modifications include organophilization, intercalation with metal polycations and pillaring.  The adsorption capacity and strength of pesticides onto homoionic, organophilic and intercalated/pillared clay minerals depend on the chemical nature of the pesticide, surface area, and pore volume. Electrostatic interactions, hydrogen and coordinative bonds, surface complexations, and hydrophobic associations are the main interactions between pesticides and clay minerals.
  • 934
  • 29 Nov 2021
Topic Review
Irosustat: Clinical Steroid Sulfatase Inhibitor
Irosustat: (6-oxo-8,9,10,11-tetrahydro-7H-cyclohepta[c]chromen-3-yl) sulfamate; 6-oxo-8,9,10,11-tetrahydro-7H-cyclohepta-(c)(1)benzopyran-3-O-sulfamate; also known as STX64, 667 Coumate, BN83495, Oristusane is a tricyclic synthetic clinical drug of the aryl sulfamate ester class, designed mainly for applications in oncology as a steroid sulfatase inhibitor and has shown clinical benefit in patients.
  • 934
  • 09 Feb 2021
Topic Review
The Recent Progress on Silver Nanoparticles
Nanomaterials are highly effective,  environmentally friendly, and applicable for various applications. Recently, silver nanoparticles (Ag NPs) are increasingly being synthesized due to their physical, chemical, and biomedical properties. Silver nanoparticles can be synthesized using physical, chemical, and biological methods. Ag NPs are widely applied in electronic and sensing applications.
  • 933
  • 20 Nov 2021
Topic Review
The Principles of Atom Transfer Radical Polymerization
Atom transfer radical polymerization (ATRP) is a robust polymerization method that was developed by Dr. Jin-Shan Wang in Professor Matyjaszewski’s laboratory in 1995. It was inspired by atom transfer radical addition, which was successfully used in the synthesis of low-molecular-weight compounds.
  • 933
  • 14 Apr 2024
  • Page
  • of
  • 467
ScholarVision Creations