Topic Review
Biochemical-Modification of Titanium Oral Implants
Biochemical Modification of Titanium Surfaces (BMTiS) is the process that immobilize proteins, enzymes, or peptides on biomaterials for the purpose of inducing specific cell and tissue responses or, in other words, to control the tissue implant interface with molecules delivered directly to the interface. Biochemical surface modification utilizes critical organic components of bone to affect tissue response. The purpose of implant surface functionalization by BMTiS derives from the supposition that the ability to imitate bone tissue’s characteristics may increment implant surface performances, thus promoting the initial biological response. Therefore BMTiS, strictly speaking, refers only to the use of molecules normally present in the human body.
  • 582
  • 09 Jun 2021
Topic Review
Biocomposite Based on Natural Polymers
Biopolymers are materials obtained from renewable resources. Despite the exciting properties of biopolymers, such as biocompatibility and environmental sustainability, they do not present antimicrobial properties (except chitosan). However, this lack of antimicrobial properties can be solved by incorporating or encapsulating antimicrobial agents. Natural polymers possess low stability in aqueous media and limited mechanical strength, which could be improved through cross-linking strategies. Hydrogels are biocompatible materials that can be synthesized from natural polymers, forming a cross-linking material. Alginate, collagen, fibrin, chitosan, gelatin, and hyaluronic acid are some natural polymers used to synthesize hydrogels.
  • 479
  • 12 Jul 2022
Topic Review
Biocomposites
Biocomposites are an emerging material class with the potential to reduce a product’s through-life environmental impact relative to wholly synthetic composites. As with most materials, there are challenges and opportunities with the adoption of biocomposites at the each stage of the life cycle.
  • 1.4K
  • 15 Apr 2021
Topic Review
Biocompounds in Potato Peel
Potato germplasm is characterized by a huge variability in composition and concentration of secondary metabolites that play a role in increasing plant ability to cope with environmental challenges, due to their reported biocide activity on insects, bacteria, and fungi. Their distribution within the tuber is not uniform: Most of them are concentrated in the peel, made of periderm tissue, whose cell layers contain corky cell walls, which confer protection from phytopathogens, especially during tuber growth and storage. Thus, considering that potato peel is constantly exposed to biotic stresses, it is not surprising that it is a precious source of bioactive compounds, mainly phenolics and alkaloids, which have an enormous potential to deliver new bioprotectors.
  • 794
  • 13 Apr 2021
Topic Review
Bioconversion of Starch Base Food Waste into Bioethanol
Food wastes are organic wastes or biodegradables. They are generated from various sources such as restaurants and cafeterias, industrial sectors, commercial and domestic kitchens, food processing plants, and other areas where a large number of people consume food. The global demand for fuel keeps increasing daily. The massive depletion of fossil fuels and their influence on the environment as pollution is a severe problem. Meanwhile, food waste disposal is also a complex problem in solid-waste management since one-third of every food consumed is discarded as waste. The standard waste management methods, including food waste incineration and landfilling, are considered hazardous to the environment. Food waste constituents are majorly starch-based and contain various biomolecules, including sugar, lipids, proteins, vitamins, cellulose, etc. These polysaccharides can be hydrolysed into monosaccharides such as glucose, which can then be fermented using microorganisms to produce ethanol through the fermenting of sugars derived from enzymatic hydrolysis treatment of food wastes. The human food system is rich in starch, which can be a potential resource for bioethanol production.
  • 1.2K
  • 20 Sep 2022
Topic Review
Biodegradable Film Materials for Packaging
In today’s world, the problem of “white pollution” is becoming more and more serious, and many countries have paid special attention to this problem, and it has become one of the most important tasks to reduce polymer waste and to protect the environment. Due to the degradability, safety, economy and practicality of biodegradable packaging film materials, biodegradable packaging film materials have become a major trend in the packaging industry to replace traditional packaging film materials, provided that the packaging performance requirements are met. Degraded plastics are plastics that have been subjected to defined environmental conditions for a period of time and contain one or more steps that result in significant changes in the chemical structure of the material resulting in loss of certain properties (such as integrity, molecular mass, structure or mechanical strength) and/or fragmentation.
  • 535
  • 19 May 2022
Topic Review
Biodegradable Microparticles for Regenerative Medicine
Regenerative medicine is one of the most attractive topics of research worldwide. Different strategies are proposed, and a range of materials of various forms and compositions tailored for tissue engineering are developed, but this approach just started to emerge in clinics. Biodegradable microparticles (MPs) made from degradable and biocompatible polymers, with a mean diameter of ~200 μm, are attractive not only as 3D matrices to multiply cells but also as a scaffold to support tissue rebuilding.
  • 495
  • 19 Apr 2022
Topic Review
Biodegradable Microplastics and Plants
Microplastics (MPs) pollution has emerged as one of the world’s most serious environmental issues, with harmful consequences for ecosystems and human health. One proposed solution to their accumulation in the environment is the replacement of nondegradable plastics with biodegradable ones. However, due to the lack of true biodegradability in some ecosystems, they also give rise to biodegradable microplastics (BioMPs) that negatively impact different ecosystems and living organisms. 
  • 139
  • 14 Dec 2023
Topic Review
Biodegradable Packaging Materials
Food packaging is used to protect food products from physical, chemical, or biological stresses in their environment, thereby improving their quality and extending their shelf life. A variety of packaging materials have traditionally been used for this purpose, including plastic, glass, metal, paper, wood, and textiles. Some of these materials, particularly plastics, cause considerable environmental damage during their manufacture and after their disposal. For0 this reason, there has been great interest in developing biodegradable forms of packaging materials that are more sustainable to produce, that rapidly decompose after disposal, and that do not cause as much environmental pollution. These packaging materials can be constructed from biodegradable film-forming materials such as proteins, polysaccharides, and lipids. Moreover, their functional performance can be enhanced by incorporating organic or inorganic nanoparticles or nanofibers. For instance, nano-forms of clay, iron oxide (Fe2O3), titanium dioxide (TiO2), silver (Ag) and zinc oxide (ZnO) can be used (inorganic nanoparticles), as well as nano-forms of chitin and cellulose and their derivatives (organic nanoparticles). The resulting nanocomposites often have enhanced technofunctional characteristics such as improved optical, mechanical and barrier properties, as well as some novel functional attributes, such as antimicrobial and antioxidant activities, that can prolong the shelf life of packaged foods. Moreover, it is possible to incorporate sensing materials into biodegradable films to provide information about the quality, freshness, or safety of packaged foods. 
  • 1.3K
  • 30 Jun 2021
Topic Review
Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases.
  • 205
  • 25 Aug 2023
  • Page
  • of
  • 465
Video Production Service