Topic Review
Bio-Based Monomers
Bioplastics are polymers made from sustainable bio-based feedstocks. The potential of producing bio-based monomers in microbes has been investigated for decades, their economic feasibility is still unsatisfactory compared with petroleum-derived methods.
  • 913
  • 16 Feb 2023
Topic Review
Bio-Based Polymers for Environmentally Friendly Phase Change Materials
Phase change materials (PCMs) have received increasing attention in recent years as they enable the storage of thermal energy in the form of sensible and latent heat, and they are used in advanced technical solutions for the conservation of sustainable and waste energy. Importantly, most of the currently applied PCMs are produced from non-renewable sources and their carbon footprint is associated with some environmental impact. However, novel PCMs can also be designed and fabricated using green materials without or with a slight impact on the environment.
  • 128
  • 07 Feb 2024
Topic Review
Bio-Based Polyurethane Elastomers
Elastomers, a category of polymers characterized by high elasticity and viscoelasticity, possess the ability to revert to their initial form after undergoing stretching or deformation and are known for their outstanding resistance to abrasion, tearing, and impact.
  • 231
  • 16 Jan 2024
Topic Review
Bio-Based Wood Protective Systems
Natural compounds and biopolymers materials contribute to protective matrices that safeguard wood surfaces against diverse challenges. Essential oils, vegetable oils, and bio-based polymers are explored for their potential in crafting eco-friendly and durable coating matrices. 
  • 262
  • 29 Jan 2024
Topic Review
Bio-catalysis in Multicomponent Reactions
Enzyme catalysis is a very active research area in organic chemistry, because biocatalysts are compatible with and can be adjusted to many reaction conditions, as well as substrates. Their integration in multicomponent reactions (MCRs) allows for simple protocols to be implemented in the diversity-oriented synthesis of complex molecules in chemo-, regio-, stereoselective or even specific modes without the need for the protection/deprotection of functional groups.
  • 988
  • 28 Dec 2020
Topic Review
Bio-Coatings Methods for Fruits and Vegetables Preservation
Consuming fresh food is undoubtedly the best way to enjoy various flavors and nutrients, but their preservation helps to enjoy all these even out of season. Bio-coating technologies hold great promise for the future of food preservation, offering a more sustainable and healthy way to keep fruits and vegetables fresh for more extended periods. The choice of a coating method may depend on the type of fresh fruits and vegetables, the coating material, and the desired coating thickness. The application method should be carried out under hygienic conditions to prevent contamination and ensure the effectiveness of the coating. It is also essential to apply the coating evenly and that it adheres properly to the surface of the produce, maximizing its effectiveness. The coating material can be applied in its pure form or mixed with other ingredients such as antioxidants, preservatives, or antimicrobial agents, thus enhancing its effectiveness.
  • 767
  • 16 Aug 2023
Topic Review
Bio-Composites
Bio-composites are degradable, renewable, non-abrasive, and non-toxic, with comparable properties to those of synthetic fiber composites and used in many applications in various fields. Naturals fibers are abundant and have low harvesting costs with adequate mechanical properties. Hazards of synthetic fibers, recycling issues, and toxic byproducts are the main driving factors in the research and development of bio-composites. Bio-composites are fabricated by combining natural fibers in a matrix material. The matrix material can be biodegradable, non-biodegradable, or synthetic. Synthetic matrix materials, along with natural fibers, are used to form hybrid bio-composites.
  • 5.4K
  • 09 Mar 2021
Topic Review
Bio-Inspired Hierarchical Fibres
Several naturally occurring biological systems, such as bones, nacre or wood, display hierarchical architectures with a central role of the nanostructuration that allows reaching amazing properties such as high strength and toughness. Developing such architectures in man-made materials is highly challenging, and recent research relies on this concept of hierarchical structures to design high-performance composite materials. This review deals more specifically with the development of hierarchical fibres by the deposition of nano-objects at their surface to tailor the fibre/matrix interphase in (bio)composites. Fully synthetic hierarchical fibre reinforced composites are described, and the potential of hierarchical fibres is discussed for the development of sustainable biocomposite materials with enhanced structural performance. Based on various surface, microstructural and mechanical characterizations, this review highlights that nano-objects coated on natural fibres (carbonnanotubes, ZnO nanowires, nanocelluloses) can improve the load transfer and interfacial adhesion between the matrix and the fibres, and the resulting mechanical performances of biocomposites. Indeed, the surface topography of the fibres is modified with higher roughness and specific surface area, implying increased mechanical interlocking with the matrix. As a result, the interfacial shear strength (IFSS) between fibres and polymer matrices is enhanced, and failure mechanisms can bemodified with a crack propagation occurring through a zig-zag path along interphases.
  • 875
  • 29 May 2021
Topic Review
Bio-Inspired Smart Nanoparticles in Oncology
Compared with traditional treatment, nanotechnology offers new therapeutic options for cancer due to its ability to selectively target and control drug release. Among the various routes of nanoparticle synthesis, plants have gained significant recognition. The tremendous potential of medicinal plants in anticancer treatments calls for a comprehensive research of existing studies on plant-based nanoparticles. The research examined various metallic nanoparticles obtained by green synthesis using medicinal plants. Plants contain biomolecules, secondary metabolites, and coenzymes that facilitate the reduction of metal ions into nanoparticles. These nanoparticles are believed to be potential antioxidants and cancer-fighting agents.
  • 484
  • 02 Nov 2022
Topic Review
Bio-Lubricants
An extremely efficient lubrication system is achieved in synovial joints by means of bio-lubricants and sophisticated nanostructured surfaces that work together.
  • 590
  • 25 Jul 2022
  • Page
  • of
  • 465
Video Production Service