Topic Review
Citrus Uses in the Food Industry
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives.
  • 2.1K
  • 03 Mar 2023
Topic Review
Skin Tissue Engineering Application
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Currently, stem cells and biomaterials are popularly used in the skin tissue engineering approach in different wound healing treatments. In skin tissue engineering application, stem cell facilitates in the regeneration of disintegrated tissue. Whereas, biomaterials serve as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. Hence, the combination and synergistic effect of biomaterials and stem cells have the potential to broaden the application of skin tissue engineering in wound healing treatment therapies.  
  • 2.1K
  • 19 May 2021
Topic Review
Laser Transmission Welding of Polymers
Laser Transmission Welding of Polymers is a joining technique frequently selected by contemporary researchers to weld two thermoplastic surfaces.
  • 2.1K
  • 30 Mar 2021
Topic Review
Dimensionality of materials
As generally known dimensionality of materials is a crucial factor to determine functions and properties of the materials. In addition to zero-dimensional, one-dimensional, three-dimensional, and further integrated functional materials, various two-dimensional materials have been paid special attention. Two-dimensional materials have their unique electronic propertiesand play important roles in interfacial sciences.
  • 2.1K
  • 12 Aug 2021
Topic Review
Clay-Based Polymer Nanocomposites
Clay-based polymer nanocomposites are often referred to as polymer layered silicates, nanostructured polymers, or simply polymer nanocomposites. These polymers are reinforced with inorganic particles containing at least one dimension in the nanometric scale (<100 nm). Compared to traditional composites (macro- or microscale), polymer nanocomposites offer the opportunity to explore new behaviors and functionalities beyond conventional polymers. Nanoparticles often strongly influence the mechanical properties of polymers in very low volume fractions due to the relatively short distance between nanoparticles, molecular compatibility, and interfacial interaction between the particles and the polymer chains.
  • 2.1K
  • 09 Oct 2021
Topic Review
Conjugate Acid
A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid donates a proton (H+) to a base—in other words, it is a base with a hydrogen ion added to it, as in the reverse reaction it loses a hydrogen ion. On the other hand, a conjugate base is what is left over after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a species formed by the removal of a proton from an acid, as in the reverse reaction it is able to gain a hydrogen ion. Because some acids are capable of releasing multiple protons, the conjugate base of an acid may itself be acidic. In summary, this can be represented as the following chemical reaction: Johannes Nicolaus Brønsted and Martin Lowry introduced the Brønsted–Lowry theory, which proposed that any compound that can transfer a proton to any other compound is an acid, and the compound that accepts the proton is a base. A proton is a nuclear particle with a unit positive electrical charge; it is represented by the symbol H+ because it constitutes the nucleus of a hydrogen atom, that is, a hydrogen cation. A cation can be a conjugate acid, and an anion can be a conjugate base, depending on which substance is involved and which acid–base theory is the viewpoint. The simplest anion which can be a conjugate base is the solvated electron whose conjugate acid is the atomic hydrogen.
  • 2.1K
  • 28 Nov 2022
Topic Review
Nanomaterials Combined with Bacteriocins
Bacteriocins are antimicrobial peptides or proteinaceous materials produced by bacteria against pathogens. These molecules have high efficiency and specificity and are equipped with many properties useful in food-related applications, such as food preservatives and additives, as well as biomedical applications, such as serving as alternatives to current antibacterial, antiviral, anti-cancer, and antibiofilm agents. Despite their advantages as alternative therapeutics over existing strategies, several limitations of bacteriocins, such as the high cost of isolation and purification, narrow spectrum of activity, low stability and solubility, and easy enzymatic degradation, need to be improved. Nanomaterials are promising agents in many biological applications. They are widely used in the conjugation or decoration of bacteriocins to augment the activity of bacterioc-ins or reduce problems related to their use in biomedical applications. Therefore, bacteriocins combined with nanomaterials have emerged as promising molecules that can be used in various biomedical applications.
  • 2.1K
  • 11 Oct 2021
Topic Review
Structure and Bonding in Planar Hypercoordinate Carbon Compounds
The term hypercoordination refers to the extent of the coordination of an element by its normal value. In the hypercoordination sphere, the element can achieve planar and/or non-planar molecular shape. Hence, planar hypercoordinate carbon species violate two structural rules: (i) The highest coordination number of carbon is four and (ii) the tetrahedral orientation by the connected elements and/or groups. The unusual planar orientations are mostly stabilized by the electronic interactions of the central atom with the surrounding ligands. Primary knowledge of the planar hypercoordinate chemistry will lead to its forthcoming expansion. Experimental and theoretical interests in planar tetracoordinate carbon (ptC), planar pentacoordinate carbon (ppC), and planar hexacoordinate carbon (phC) are continued. The proposed electronic and mechanical strategies are helpful for the designing of the ptC compounds. Moreover, the 18-valence electron rule can guide the design of new ptC clusters computationally as well as experimentally. However, the counting of 18-valence electrons is not a requisite condition to contain a ptC in a cluster. Furthermore, this ptC idea is expanded to the probability of a greater coordination number of carbon in planar orientations. Unfortunately, until now, there are no such logical approaches to designing ppC, phC, or higher-coordinate carbon molecules/ions. There exist a few global minimum structures of phC clusters identified computationally, but none have been detected experimentally. All planar hypercoordinate carbon species in the global minima may be feasible in the gas phase.
  • 2.1K
  • 26 Dec 2022
Topic Review
Self-healing Polymeric Materials
The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites.
  • 2.1K
  • 21 Apr 2021
Topic Review
Sol-gel Technology for Commercial Coatings
The commercial availability of inorganic/organic precursors for sol-gel formulation is very high and increase day by day. By using the sol-gel technology, it is possible to provide materials with functional/multi-functional characteristics including flame retardant, anti-mosquito, water-repellent oil-repellent, anti-bacterial, anti-wrinkle, ultraviolet (UV) protection, self-cleaning and other properties. Some of these properties are discussed here, describing basic chemistry, factors affecting the sol-gel process, as well as progress and parameters controlling sol-gel technology for thin coatings.
  • 2.1K
  • 29 Apr 2021
  • Page
  • of
  • 465
Video Production Service