Topic Review
Metal-Based Chemotherapeutic Treatments
Herein we provides an overview of the various research approaches we have explored in recent years to improve metal-based agents for cancer or infection treatments. Although cisplatin, carboplatin, and oxaliplatin remain the cornerstones in tumor chemotherapy, the discovery and approval of novel inorganic anticancer drugs is a very slow process. Analogously, although a few promising inorganic drugs have found clinical application against parasitic or bacterial infections, their use remains relatively limited. Moreover, the discovery process is often affected by small therapeutic enhancements that are not attractive for the pharmaceutical industry. However, the availability of increasing mechanistic information for the modes of action of established inorganic drugs is fueling the exploration of various approaches for developing effective inorganic chemotherapy agents. Through a series of examples, some from our own research experience, we focus our attention on a number of promising strategies, including (1) drug repurposing, (2) the simple modification of the chemical structures of approved metal-based drugs, (3) testing novel drug combinations, and (4) newly synthesized complexes coupling different anticancer drugs. Accordingly, we aim to suggest and summarize a series of reliable approaches that are exploitable for the development of improved and innovative treatments.
  • 671
  • 25 May 2021
Topic Review
Membrane-Based Environmental Remediation
During the last century, industrialization has grown very fast and as a result heavy metals have contaminated many water sources. Due to their high toxicity, these pollutants are hazardous for humans, fish, and aquatic flora. Traditional techniques for their removal are adsorption, electro-dialysis, precipitation, and ion exchange, but they all present various drawbacks. Membrane technology represents an exciting alternative to the traditional ones characterized by high efficiency, low energy consumption and waste production, mild operating conditions, and easy scale-up. In this review, the attention has been focused on applying driven-pressure membrane processes for heavy metal removal, highlighting each of the positive and negative aspects. Advantages and disadvantages, and recent progress on the production of nanocomposite membranes and electrospun nanofiber membranes for the adsorption of heavy metal ions have also been reported and critically discussed. Finally, future prospective research activities and the key steps required to make their use effective on an industrial scale have been presented
  • 671
  • 02 Jul 2021
Topic Review
Arabinogalactan (AG) and Hyaluronic Acid (HA)
The properties of mixtures of two polysaccharides, arabinogalactan (AG) and hyaluronic acid (HA), were investigated in solution by the measurement of diffusion coefficients D of water protons by DOSY (Diffusion Ordered SpectroscopY), by the determination of viscosity and by the investigation of the affinity of a small molecule molecular probe versus AG/HA mixtures in the presence of bovine submaxillary mucin (BSM) by 1HNMR spectroscopy.
  • 671
  • 03 Dec 2021
Topic Review
Crystal and Electronic Structure of Perovskite Oxides
Perovskites have been proven to be the one of best cathodes for the solid oxide electrolyte cell (SOEC) devices, in particular, Co-based ones usually exhibit extremely high catalytic performances due to the multivalent properties of Co ions. Thorough understanding of the crystal and electronic structure of perovskite oxides are important.
  • 671
  • 02 Nov 2022
Topic Review
Nucleation of Diamond
Nucleation is a key process for the growth of diamond films. Spontaneously nucleation on heterogeneous substrates is difficult. This is mainly because the high surface energy of diamond. Rapid nucleation (a few minutes commonly) is a necessary condition for the deposition of high-quality diamond films. The characteristics of the substrate, such as surface defects, surface energy, surface diffusion and bulk diffusion of atoms, and chemical reactivity, affect the diamond nucleation process. Especially, a gallium nitride (GaN) substrate, which has a large lattice mismatch and thermal expansion mismatch with diamond, puts forward some difficult requirements for diamond nucleation. The temperature of the substrate also affects the diamond nucleation process. Considering the quality and rate of diamond nucleation and the thermal stability of GaN high electron mobility transistors (HEMTs), researchers regard ~600 °C as a more suitable nucleation temperature. 
  • 671
  • 03 Apr 2023
Topic Review
Albumin Nanovectors
Albumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents.
  • 670
  • 06 Feb 2021
Topic Review
ZnO Nanowires Cold Cathode
A cold cathode has many applications in high frequency and high power electronic devices, X-ray source, vacuum microelectronic devices and vacuum nanoelectronic devices. After decades of exploration on the cold cathode materials, ZnO nanowire has been regarded as one of the most promising candidates, in particular for large area field emitter arrays (FEAs). Numerous works on the fundamental field emission properties of ZnO nanowire, as well as demonstrations of varieties of large area vacuum microelectronic applications, have been reported. Moreover, techniques such as modifying the geometrical structure, surface decoration and element doping were also proposed for optimizing the field emissions.
  • 670
  • 06 Sep 2021
Topic Review
Catalysts for Glycerol Reforming
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors, and other useful chemicals, etc. Steam, aqueous, and autothermal reforming processes have been primarily investigated in glycerol reforming. An update on glycerol reforming is given, with an exclusive focus on the various catalyst's performance in designing reaction operation conditions.
  • 670
  • 25 Jul 2022
Topic Review
Dehydrogenases involved in Reduction of CO2 to CH3OH
The three dehydrogenase enzymes involved in the CO2 to methanol conversion are: Formate dehydrogenase, Formaldehyde dehydrogenase and Alcohol dehydrogenase.
  • 670
  • 26 Aug 2022
Topic Review
Perovskite Solar Cells with ZnO Electron Transport Layer
Perovskite solar cells (PSCs) have experienced rapid development in the past period of time, and a record efficiency of up to 25.7% has been yielded. The PSCs with the planar structure are the most prevailing, which not only can significantly simplify the device fabrication process but also reduce the processing temperature. Particularly, the electron transport layer (ETL) plays a critical role in boosting the device performance of planar PSCs. ZnO is a promising candidate as the ETL owing to its high transparency, suitable energy band structure, and high electron mobility. Moreover, ZnO is easy to be processed at a low cost and low energy. 
  • 670
  • 05 Jan 2023
  • Page
  • of
  • 465
ScholarVision Creations