Topic Review
Metal–Organic Framework-Based Materials for Photocatalytic Nitrogen Fixation
Metal–organic frameworks (MOFs) are coordination polymers with high porosity that are constructed from molecular engineering. Constructing MOFs as photocatalysts for the reduction of nitrogen to ammonia is a newly emerging but fast-growing field, owing to MOFs’ large pore volumes, adjustable pore sizes, controllable structures, wide light harvesting ranges, and high densities of exposed catalytic sites. They are also growing in popularity because of the pristine MOFs that can easily be transformed into advanced composites and derivatives, with enhanced catalytic performance.
  • 698
  • 18 Oct 2022
Topic Review
Inorganic Pyrophosphatase Activities Non-Radioactive Assays
Inorganic pyrophosphatase (PPase) is a ubiquitous enzyme that converts pyrophosphate (PPi) to phosphate and, in this way, controls numerous biosynthetic reactions that produce PPi as a byproduct. PPase activity is generally assayed by measuring the product of the hydrolysis reaction, phosphate. This reaction is reversible, allowing PPi synthesis measurements and making PPase an excellent model enzyme for the study of phosphoanhydride bond formation. 
  • 697
  • 30 Apr 2021
Topic Review
High-Pressure Mechanistic, Bioinorganic NO Chemistry
Nitric oxide (NO) is a short-living free radical, and, in contrast to many signaling agents (e.g., various peptides), which rely on receptors where structural relationships determine their function, the chemistry of NO determines its biological roles. There are two distinct reaction types—direct and indirect—which depend on the NO concentration, reactive species formed and reaction kinetics. The direct effects involve interactions of NO itself with biological targets such as redox metal centers, redox-active amino acids, or other radical species.
  • 697
  • 08 Nov 2021
Topic Review
Analysis Methodology of Precursors to 3-Sulfanylhexan-1-ol in Wine
Volatile polyfunctional thiol compounds, particularly 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA), are key odorants contributing to the aroma profile of many wine styles, generally imparting tropical grapefruit and passionfruit aromas. 3SH and 3SHA are present in negligible concentrations in the grape berry, juice, and must, suggesting that they are released from non-volatile precursors present in the grape. The exploration of the nature and biogenesis of these precursors to 3SH and 3SHA has proven important for the elucidation of polyfunctional thiol biogenesis during alcoholic fermentation.
  • 697
  • 27 Jul 2022
Topic Review
List of Adrenergic Drugs
This is a list of adrenergic drugs. These are pharmaceutical drugs, naturally occurring compounds and other chemicals that influence the function of the neurotransmitter epinephrine (adrenaline).
  • 697
  • 21 Oct 2022
Topic Review
VOCs Gas Sensing
Nowadays, the detection of VOCs at trace level (down to ppb) is feasible by exploiting ultra-sensitive and highly selective chemoresistors, especially in the field of medical diagnosis. By coupling Metal Oxide Semiconductors (MOS e.g. SnO2, ZnO, WO3, CuO, TiO2 and Fe2O3) with innovative carbon-based materials (as graphene oxide) outstanding performances in terms of sensitivity, selectivity, limits of detection, response and recovery times towards specific gaseous targets (such as ethanol, acetone, formaldehyde and aromatic compounds) can be easily achieved. Notably, carbonaceous species, highly interconnected to MOS nanoparticles, enhance the sensor responses by i) increasing the surface area and the pores content, ii) favoring the electron migration, the transfer efficiency and gas diffusion rate, iii) promoting the active sites concomitantly limiting the nanopowders agglomeration; and iv) forming nano-heterojunctions. Herein, the aim of the present work is to highlight the nanocomposites features in order to engineer novel flexible, miniaturized and low working temperature sensors, able to detect specific VOC biomarkers of a human’s disease.
  • 696
  • 04 Aug 2020
Topic Review
Biomaterials in 3D Cell Culture
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. 
  • 696
  • 16 Apr 2021
Topic Review
VNPs for Anti-Cancer Therapy
Naturally occurring viral nanomaterials have gained popularity owing to their biocompatible and biodegradable nature. Plant virus nanoparticles (VNPs) can be used as nanocarriers for a number of biomedical applications. Plant VNPs are inexpensive to produce, safe to administer and efficacious as treatments. Features which distinguish plant viruses from synthetic nanocarriers include stability, flexibility, diversity in shape and size for use in drug delivery and the nontoxic nature of plant viruses in humans. Cancer is one of the most common death causing disease worldwide and it is characterized by uncontrolled rapid cell division and differentiation. VNPs are an ideal choice to apply for cancer treatment owing to the enhanced permeation and retention (EPR) potential of cancer cells for these nanoparticles, whereas VNPs cannot penetrate through healthy tissues due to tightly packed endothelial cells.
  • 696
  • 16 Sep 2021
Topic Review
Polyurea Aerogels
The term “aerogel” describes a certain class of low-density solid materials with a high open porosity. Aerogels can be considered to be a subclass of the much broader domain of porous materials; however, they are distinguished from, for example, blown foams, because they are prepared in a completely different manner—namely, by drying wet gels in a way that preserves nearly all of their volume in the final dry form.
  • 696
  • 02 Apr 2022
Topic Review
Laser-Induced Breakdown Spectroscopy for Food Quality Evaluation
Laser-induced Breakdown Spectroscopy (LIBS) is becoming an increasingly popular analytical technique for characterizing and identifying various products; its multi-element analysis, fast response, remote sensing, and sample preparation is minimal or nonexistent, and low running costs can significantly accelerate the analysis of foods with medicinal properties (FMPs). 
  • 695
  • 28 Jul 2022
  • Page
  • of
  • 465
ScholarVision Creations