Topic Review
Amorphized Cellulose
Amorphized cellulose is partially or completely decrystallized cellulose. Natural celluloses isolated from terrestrial plants (e.g. cotton, wood, etc.), algae (e.g. Cladophora sp., Valonia ventricosa, etc.), shells of some marine tunicates (e.g. Ascidia sp., Halocynthia roretzi, etc.), and synthesized by some bacteria (e.g. Glucon­aceto­bacter sp., Medusomyces gisevii, etc.) along with microcrystalline cellulose, are semicrystalline biopolymers with a crystallinity degree of 50 to 80%.
  • 807
  • 23 Dec 2021
Topic Review
Food Peptides for the Nutricosmetic Industry
Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). 
  • 807
  • 31 Mar 2023
Topic Review
Vinyl Ether
Vinyl ether is the organic compound with the formula O(CH=CH2)2. Other names include divinyl ether, divinyl oxide, ethenoxyethene. It is a colorless, volatile liquid. Under the tradename vinethene, vinyl ether was once used as an inhalation anesthetic. The analytical techniques used to study its pharmacology laid the groundwork for the testing of new anesthetic agents. Many divinyl ether derivatives of fatty acids exist in nature.
  • 807
  • 28 Oct 2022
Topic Review
Formulation of Marketing Strategies for Cultured Meat
Existing conventional meat production systems have negative environmental effects, coupled with growing public health concerns. Furthermore, growing population has continued to increase the consumer demand for meat. Research suggested the utilization of cultured meat (CUME) grown from animal cells without encompassing the slaughtering process. Additional benefits of CUME include being environmentally friendly, with lower production of greenhouse gases, reduced land, and water usage. Studies were conducted to determine the overall consumer acceptability of CUME. Studies have also elaborated that wide-scale adoption of CUME is dependent on a multitude of factors, including regulatory bodies, economic availability, religion, and media perception of CUME.
  • 807
  • 14 Sep 2022
Topic Review
Vat Photopolymerization
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner.
  • 807
  • 11 Oct 2023
Topic Review
Bisphenol A in Related Pathological Conditions
Bisphenol A (BPA) is one of the so-called endocrine disrupting chemicals (EDCs) and is thought to be involved in the pathogenesis of different morbid conditions: immune-mediated disorders, type-2 diabetes mellitus, cardiovascular diseases, and cancer. 
  • 806
  • 27 Mar 2023
Topic Review
Enzymes in/on Metal-Organic Framework Materials
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligibleprotein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
  • 806
  • 16 Sep 2021
Topic Review
Application of Geopolymers in Adsorption
Geopolymer is a porous inorganic material with a three-dimensional mesh structure, good mechanical properties, a simple preparation process (no sintering) and a low economic cost, and it is environmentally friendly. Geopolymer concrete has been widely used in the construction field, and many other studies have revealed that geopolymer will become one of the most promising inorganic materials with unique structure and properties. Geopolymer has a three-dimensional mesh structure that provides the geopolymer with high porosity and a significant number of mesopores that enhance the adsorption capacity by providing more exposed binding sites on the surface. The high mesoporous structure, high porosity, and three-dimensional mesh structure give geopolymers a larger specific surface area, which increases the contact sites with pollutants and impurities. 
  • 806
  • 14 Sep 2022
Topic Review
Nucleophilic Substitution
A nucleophilic substitution is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile). The molecule that contains the electrophile and the leaving functional group is called the substrate. The most general form of the reaction may be given as the following: The electron pair (:) from the nucleophile (Nuc) attacks the substrate (R-LG) and bonds with it. Simultaneously, the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br under basic conditions, where the attacking nucleophile is OH− and the leaving group is Br−. Nucleophilic substitution reactions are common in organic chemistry (especially introductory organic chemistry). Nucleophiles often attack a saturated aliphatic carbon. Less often, they may attack an aromatic or unsaturated carbon.
  • 806
  • 26 Oct 2022
Topic Review
Polymer Electrolyte Membranes Fuel Cell
The development of sulfonated hydrocarbon polymer (SHP)-based polymer electrolyte membranes (PEMs) has been pursued in order to overcome drawbacks of the perfluorosulfonic acid ionomer-based PEMs in fuel cell applications. To improve the proton conductivity of SHP-based PEMs without deterioration in physicochemical stability, control of polymeric architecture is necessary to form distinct phase-separated structures between the hydrophilic and hydrophobic domains. By pursuing rational design strategies for the copolymer architectures, it will be possible to develop high-performance SHP-based PEMs in fuel cell applications. This study focused on the synthetic procedures which underlie structure-engineered copolymers and their PEM properties.
  • 805
  • 22 Oct 2021
  • Page
  • of
  • 465
ScholarVision Creations