Topic Review
Classification of Advanced Polymers by Application in Food/Beverages
Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste.  In addition to protecting the edible goods inside any package, researchers in polymers for food and beverage applications have leapt to develop polymers for advanced applications.
  • 927
  • 01 Dec 2022
Topic Review
Synthetic Applications of Aziridinium Ions
Aziridines are three-membered cyclic organic heterocyclic compounds with one nitrogen atom in the ring. 
  • 927
  • 27 Apr 2021
Topic Review
Thermoresponsive Polypeptoids
Thermoresponsive polypeptoids exhibiting a reversible phase transition in a controlled manner to temperature are a promising class of smart polymers that have drawn growing interest because of its excellent biocompatibility, biodegradability, and bioactivity. The phase transition behavior of these polymers can be tuned by polymer architectures, chain-end, and various functional groups. 
  • 927
  • 29 Dec 2020
Topic Review
Macrolides
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions.
  • 926
  • 03 Jun 2021
Topic Review
Biodegradable Polymers
Biodegradable polymers are those which can degrade into water and carbon dioxide under normal environmental conditions through microbial action, providing compost as a simple and sustainable disposal option.
  • 926
  • 17 Jan 2022
Topic Review
Chemical Rings
The epoxidized group, also known as the oxirane group, can be considered as one of the most crucial rings in chemistry. Due to the high ring strain and the polarization of the C–O bond in this three-membered ring, several reactions can be carried out. One can see such a functional group as a crucial intermediate in fuels, polymers, materials, fine chemistry, etc. 
  • 926
  • 30 Aug 2021
Topic Review
Antioxidants and Carbon-Based Electrodes
Antioxidants are compounds that prevent or delay the oxidation process, acting at a much smaller concentration, in comparison to that of the preserved substrate. Primary antioxidants act as scavenging or chain breaking antioxidants, delaying initiation or interrupting propagation step. Secondary antioxidants quench singlet oxygen, decompose peroxides in non-radical species, chelate prooxidative metal ions, inhibit oxidative enzymes. Based on antioxidants’ reactivity, four lines of defense have been described: Preventative antioxidants, radical scavengers, repair antioxidants, and antioxidants relying on adaptation mechanisms. Carbon-based electrodes are largely employed in electroanalysis given their special features, that encompass large surface area, high electroconductivity, chemical stability, nanostructuring possibilities, facility of manufacturing at low cost, and easiness of surface modification. Largely employed methods encompass voltammetry, amperometry, biamperometry and potentiometry. Determination of key endogenous and exogenous individual antioxidants, as well as of antioxidant activity and its main contributors relied on unmodified or modified carbon electrodes, whose analytical parameters are detailed. Recent advances based on modifications with carbon-nanotubes or the use of hybrid nanocomposite materials are described. Large effective surface area, increased mass transport, electrocatalytical effects, improved sensitivity, and low detection limits in the nanomolar range were reported, with applications validated in complex media such as foodstuffs and biological samples.
  • 926
  • 12 Apr 2021
Topic Review
Preparation Methods of Titanium Sub-Oxides Electrode
Compared with the instability of graphite electrodes, the high expenditure of noble metal electrodes and boron-doped diamond electrodes, and the hidden dangers of titanium-based metal oxide electrodes, a titanium sub-oxide material has been characterized as an ideal choice of anode material due to its unique crystal and electronic structure, including high conductivity, decent catalytic activity, intense physical and chemical stability, corrosion resistance, low cost, and long service life, etc. 
  • 925
  • 17 Jun 2022
Topic Review
Silica Aerogel Incorporated Cementitious Composites
Silica aerogels are made of 95% air, the rest being silica crystal (SiO2). They have an open porous structure that is composed of particles with diameter less than 10 nm and pores smaller than 50 nm. Lightweight cement composites with silica aerogel in the form of granulate, thanks to their low thermal conductivity and good mechanical performance, may soon find wide application in the construction sector. An important aspect that guarantees this application is the proper design of the composite, proper selection of its components, improvement of the interfacial zone between the silica aerogel and the cement matrix, and ensuring the durability of the material in the long term.  
  • 924
  • 18 Apr 2022
Topic Review
Seed-Layer Free ZnSnO3 Nanowires
ZnSnO3 semiconductor nanostructures have several applications as photocatalysis, gas sensors, and energy harvesting. However, due to its multicomponent nature, the synthesis is far more complex than its binary counter parts. The complexity increases even more when aiming for low-cost and low-temperature processes as in hydrothermal methods. Knowing in detail the influence of all the parameters involved in these processes is imperative, in order to properly control the synthesis to achieve the desired final product. Thus, this paper presents a study of the influence of the physical parameters involved in the hydrothermal synthesis of ZnSnO3 nanowires, namely volume, reaction time, and process temperature. Based on this study a growth mechanism for the complex Zn:Sn:O system is proposed. Two zinc precursors, zinc chloride and zinc acetate, were studied, showing that although the growth mechanism is inherent to the material itself, the chemical reactions for different conditions need to be considered.
  • 923
  • 24 Sep 2020
  • Page
  • of
  • 465
ScholarVision Creations