Topic Review
Yield (Engineering)
In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation. The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. In some materials, such as aluminium, there is a gradual onset of non-linear behavior, making the precise yield point difficult to determine. In such a case, the offset yield point (or proof stress) is taken as the stress at which 0.2% plastic deformation occurs. Yielding is a gradual failure mode which is normally not catastrophic, unlike ultimate failure. In solid mechanics, the yield point can be specified in terms of the three-dimensional principal stresses ([math]\displaystyle{ \sigma_1, \sigma_2 , \sigma_3 }[/math]) with a yield surface or a yield criterion. A variety of yield criteria have been developed for different materials.
  • 2.6K
  • 17 Oct 2022
Topic Review
X-ray Absorption Near Edge Structure
X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms.
  • 392
  • 18 Oct 2022
Topic Review
Virgo Interferometer
The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumentation are suspended and its laser beam operates in a vacuum. The instrument's two arms are three kilometres long and located near Pisa, Italy. Virgo is part of a scientific collaboration of laboratories from six countries: Italy and France (the two countries behind the project), the Netherlands, Poland, Hungary and Spain. Other interferometers similar to Virgo have the same goal of detecting gravitational waves, including the two LIGO interferometers in the United States (at the Hanford Site and in Livingston, Louisiana). Since 2007, Virgo and LIGO have agreed to share and jointly analyze the data recorded by their detectors and to jointly publish their results. Because the interferometric detectors are not directional (they survey the whole sky) and they are looking for signals which are weak, infrequent, one-time events, simultaneous detection of a gravitational wave in multiple instruments is necessary to confirm the signal validity and to deduce the angular direction of its source. The interferometer is named for the Virgo Cluster of about 1,500 galaxies in the Virgo constellation, about 50 million light-years from Earth. As no terrestrial source of gravitational wave is powerful enough to produce a detectable signal, Virgo must observe the Universe. The more sensitive the detector, the further it can see gravitational waves, which then increases the number of potential sources. This is relevant as the violent phenomena Virgo is potentially sensitive to (coalescence of a compact binary system, neutron stars or black holes; supernova explosion; etc.) are rare: the more galaxies Virgo is surveying, the larger the probability of a detection.
  • 434
  • 18 Nov 2022
Topic Review
Vibrational Spectroscopy of Linear Molecules
To determine the vibrational spectroscopy of linear molecules, the rotation and vibration of linear molecules are taken into account to predict which vibrational (normal) modes are active in the infrared spectrum and the Raman spectrum.
  • 408
  • 11 Nov 2022
Topic Review
Valence-shell Electron-pair Repulsion Model
There are the following main assumptions of the Valence-shell Electron-pair Repulsion (VSEPR) model. - The arrangement of covalent bonds of the atom centre analyzed depends on the number of electron pairs in its valence shell: bonds and nonbonding pairs as lone electron pairs. - The arrangement of valence electron pairs around the centre considered is to maximize their distances apart. - The non-valence electrons - inner electrons with nucleus (i.e. the core) possess the spherical symmetry (or at least it is in force for the main groups elements). It is worth to note that the intra- and intermolecular interactions influence on electronic and molecular structures in accordance with this VSEPR model.
  • 834
  • 06 Sep 2021
Topic Review
UV-Vis Absorption Spectroelectrochemistry
Ultraviolet-visible (UV-Vis) absorption spectroelectrochemistry (SEC) is a multiresponse technique that analyzes the evolution of the absorption spectra in UV-Vis regions during an electrode process. This technique provides information from an electrochemical and spectroscopic point of view. In this way, it enables a better perception about the chemical system of interest. On one hand, molecular information related to the electronic levels of the molecules is obtained from the evolution of the spectra. On the other hand, kinetic and thermodynamic information of the processes is obtained from the electrochemical signal. UV-Vis absorption SEC allows qualitative analysis, through the characterization of the different present compounds, and quantitative analysis, by determining the concentration of the analytes of interest. Furthermore, it helps to determine different electrochemical parameters such as absorptivity coefficients, standard potentials, diffusion coefficients, electronic transfer rate constants, etc. Throughout history, reversible processes have been studied with colored reagents or electrolysis products. Nowadays, it is possible to study all kinds of electrochemical processes in the entire UV-Vis spectral range, even in the near infrared (NIR).
  • 307
  • 31 Oct 2022
Topic Review
Unmanned Systems
An Unmanned System (US) or Vehicle (UV) can be defined as an “electro-mechanical system, with no human operator aboard, that is able to exert its power to perform designed missions”
  • 8.3K
  • 17 Mar 2021
Topic Review
Two-Ray Ground-Reflection Model
The Two-Rays Ground Reflected Model is a radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in LOS (line of sight). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the multipath component formed predominantly by a single ground reflected wave.
  • 6.5K
  • 08 Nov 2022
Topic Review
Two-Dimensional Nanostructures as Surface-Enhanced Raman Scattering Substrates
Two-dimensional nanostructures (2DNS) attract tremendous interest and have emerged as potential materials for a variety of applications, including biomolecule sensing, due to their high surface-to-volume ratio, tuneable optical and electronic properties. Advancements in the engineering of 2DNS and associated technologies have opened up new opportunities. Surface-enhanced Raman scattering (SERS) is a rapid, highly sensitive, non-destructive analytical technique with exceptional signal amplification potential. Several structurally and chemically engineered 2DNS with added advantages (e.g., π–π* interaction), over plasmonic SERS substrates, have been developed specifically towards biomolecule sensing in a complex matrix, such as biological fluids. 
  • 436
  • 11 Jan 2023
Topic Review
Two-Dimensional Materials in Nonlinear Optical Devices
All-optical signal processing based on nonlinear optical devices is promising for ultrafast information processing in optical communication systems. Recent advances in two-dimensional (2D) layered materials with unique structures and distinctive properties have opened up new avenues for nonlinear optics and the fabrication of related devices with high performance. 
  • 320
  • 13 Feb 2023
  • Page
  • of
  • 9