Topic Review
Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation
The conversion of solar energy and water to hydrogen via semiconductor photocatalysts is one of the efficient strategies to mitigate the energy and environmental crisis. Conjugated polymeric photocatalysts have advantages over their inorganic counterparts. Their molecular structures, band structures, and electronic properties are easily tunable through molecular engineering to extend their spectral response ranges, improve their quantum efficiencies, and enhance their hydrogen evolution rates. In particular, covalent triazine-based frameworks (CTFs) present a strong potential for solar-driven hydrogen generation due to their large continuous π-conjugated structure, high thermal and chemical stability, and efficient charge transfer and separation capability. 
  • 416
  • 14 Apr 2022
Topic Review
Organ-on-Chip
Organ-on-chip (OOC) devices are in vitro miniaturized multicellular systems with defined architectures that represent the new frontier in biomedical research to produce micro-organoids and tissues for drug testing and regenerative medicine. Although OOC devices can potentially improve the prediction capability of preclinical studies in comparison to in vitro tests and animal models, the successful transition from conventional 2D cell culture to human OOC implies the development of microfluidically supported 3D architectures to mimic the native extracellular matrix (ECM), to induce cell-ECM and multicellular interactions, as well as to modulate many cell functions including polarity, morphology, and motility. In this regard, cell-laden microgels (CLMs) represent a promising tool for 3D cell culturing and on-chip generation of micro-organs. 
  • 415
  • 08 Oct 2021
Topic Review
Crosslinking Density in Imprinting Polymerization
The crosslinking density of a material determines its physical properties, such as the porosity of the material. In imprinting polymerizations, the porosity determines access to internal binding sites and thus the capacity of the imprinted material. This entry is about effect of the commonly used crosslinking density in imprinting polymerization for a variety of applications.
  • 411
  • 30 Sep 2021
Topic Review
Disentangled Polymers and Composites
Macromolecule entanglements are common in polymers. The chains of macromolecules with carbon skeletons are flexible. The isolated chain easily takes the shape of a coil. When a macromolecule is surrounded by other macromolecules, its coils interpenetrate, and entanglements arise between these macromolecules. The condition of their occurrence is that their molecular weight exceeds a certain limit. The entanglements may be topological (these are common) or cohesive. Entanglement with another macromolecule limits the movement of the macromolecule's chain, so it is an obstacle to this movement.
  • 409
  • 29 Dec 2023
Topic Review
Applying Pickering Emulsions to Food
The proper mix of nanocellulose to a dispersion of polar and nonpolar liquids creates emulsions stabilized by finely divided solids (instead of tensoactive chemicals) named Pickering emulsions. These mixtures can be engineered to develop new food products with innovative functions, potentially more eco-friendly characteristics, and reduced risks to consumers. Although cellulose-based Pickering emulsion preparation is an exciting approach to creating new food products, there are many legal, technical, environmental, and economic gaps to be filled through research.
  • 407
  • 12 Oct 2023
Topic Review
Chemical Composition of Giant Miscanthus from Different Climatic Regions
Lignocellulosic biomass is of great interest as an alternative energy resource because it has a number of advantages. Miscanthus x gigantis is a lignocellulosic feedstock of particular interest because it combines high biomass productivity with low environmental impact, including control of CO 2 emissions. The chemical composition of lignocellulose determines the possibilities of its use for efficient industrial processing. Here we have collected specimens from a collection of Miscanthus x giganteus, which were grown in different climatic regions between 2019 and 2021. The chemical composition was quantified using traditional wet methods. The results were compared with each other and with known data. It has been shown that already from the first year of vegetation, miscanthus has the following chemical composition: cellulose content 43.2–55.5%, acid-insoluble lignin content 17.1–25.1%, pentosan 17.9–22.9%, ash content 0, 90–2.95%, and 0.3–1.2% extractives. Habitat and environment have been found to influence the chemical composition of miscanthus. It was found that the stem part of miscanthus is richer in fiber than the leaf part (48.4–54.9% versus 47.2–48.9%, respectively), regardless of the age of the plantation and habitat. The data obtained expand the geography of research into the chemical composition of miscanthus and confirm the high value of miscanthus for industrial processing into cellulose products around the world.
  • 405
  • 26 Oct 2023
Topic Review
Benefits of Chemical Desalination
The ideal chemical desalination approach is undertaken (i) without specialist training, (ii) on a typical agricultural holding (1 to 100 ha−1), and (iii) using existing water tanks and/or impoundments. It reduces the overall feed water required to produce x m3 of water (relative to reverse osmosis). It produces minimal or no waste products that require disposal.
  • 404
  • 05 May 2023
Topic Review
Development and Production of Nano-Based Polymeric Membranes
There has been increasing interest in the study and development of nanoparticle-embedded polymeric materials and their applications to special membranes. Nanoparticle-embedded polymeric materials have been observed to have a desirable compatibility with commonly used membrane matrices, a wide range of functionalities, and tunable physicochemical properties. The development of nanoparticle-embedded polymeric materials has shown great potential to overcome the longstanding challenges faced by the membrane separation industry. One major challenge that has been a bottleneck to the progress and use of membranes is the balance between the selectivity and the permeability of the membranes. 
  • 402
  • 16 Jun 2023
Topic Review
Influence of Plasticizer´s Polarity on Mechanical Stability
Compared with an styrene butadiene rubber (SBR) sample without plasticizer, the conductivity of mechanically unloaded oil-extended SBR samples decreases by an order of magnitude. The polarity of the plasticizer shows hardly any influence because the plasticizers only affect the distribution of the filler clusters. Under static load, the dielectric properties seem to be oil-dependent. 
  • 401
  • 27 Jun 2022
Topic Review
E-Polymers
E-polymers, also known as conducting polymers, are a class of materials that exhibit both electrical conductivity and the mechanical properties of polymers. The use of e-polymer materials in daily life is becoming increasingly widespread, especially in the field of biology. Since the manufacturing cost of e-polymer implants is relatively low and e-polymers also react, causing different chemical molecules to attach to the surface of the implant, they are more compatible with the surrounding environment of the body. Some e-polymers are biodegradable in the body. If used for temporary implants, the advantage of these polymers is that they can gradually degrade in the body after performing their functions, thereby reducing the possibility of any long-term complications. Polymers and their composite materials can be designed to have inherent tensile properties while maintaining their high performance, making them favorable candidates for the next generation of skin-inspired electronic materials.
  • 398
  • 16 Jan 2024
  • Page
  • of
  • 46
ScholarVision Creations