Topic Review
Pore-Selective Functionalization of HCP Films
Recent developments in the field of the breath figure (BF) method leading to pore-selective functionalization of honeycomb-patterned (HCP) films attracted great interest. The pore-selective functionalization of the HCP film gives unique properties to the film which can be used for specific applications like protein recognition, catalysis, selective cell culturing, and drug delivery.
  • 476
  • 06 Apr 2022
Topic Review
Application of Enzyme-Nanoparticle-Polymer Composites in Wastewater Treatment
Different water treatment technologies such as photochemical degradation, biodegradation, electrochemical degradation, reverse osmosis, and membrane separation have been used to get rid of water pollutants. Enzymatic treatments have received great attention due to several advantages compared to physical and chemical treatments, such as mild operating conditions and high catalytic efficiency without harsh side effects. Oxidase and peroxidase enzymes from different sources have been immobilized on metal and metal oxide-polymer composites and used in the degradation of pollutants.
  • 476
  • 14 Sep 2023
Topic Review
MIP Application for the Detection of Cancer Biomarkers
Biomarkers can provide critical information about cancer and many other diseases; therefore, developing analytical systems for recognising biomarkers is an essential direction in bioanalytical chemistry. Molecularly imprinted polymers (MIPs) have been applied in analytical systems to determine biomarkers. The most attractive way to replace natural biological recognition systems is based on applying molecularly imprinted polymers.
  • 474
  • 24 Apr 2023
Topic Review
Improving the Barrier Properties of the Biodegradable Polymers
Biodegradable polymers have become a topic of great scientific and industrial interest due to their environmentally friendly nature. For the benefit of the market economy and environment, biodegradable materials should play a more critical role in packaging materials. 
  • 474
  • 27 Feb 2024
Topic Review
Carbon Dioxide Capture By Biopolymer-Derived Porous Materials
Rising atmospheric carbon dioxide (CO2) concentration in the atmosphere is responsible for global warming which in turn causes abrupt climate change and consequently poses a threat to the living organisms in the coming years. CO2 capture and separation are crucial to reduce the CO2 content in the atmosphere. Post-combustion capture is one of the most useful techniques for capturing CO2 due to its practicality and ease of use. For adsorption-driven post-combustion CO2 capture, sorbents with large surface area, high volume, and narrow pores are highly effective. Natural polymers, such as polysaccharides, are less expensive, more plentiful, and can be modified by a variety of methods to produce porous materials and thus can be effectively utilized for CO2 capture. A significant amount of research activities has already been established in this field, especially in the last ten years and are still in progress. In this review, we have introduced the latest developments to the readers about synthetic techniques, post-synthetic modifications and CO2 capture capacities of various biopolymer-based materials published in the last five years (2018–2022).
  • 473
  • 21 Aug 2023
Topic Review
Categories of Quantum Photoinitiators
The use of novel photoinitiators (PIs) for free-radical polymerization has attracted significant attention from the scientific community. Quantum PIs, quantum-confined nanoscale crystals with semiconductor properties, have received interest for use in photopolymerization, due to their precisely tunable properties as a function of structural and surface engineering.
  • 470
  • 20 Aug 2021
Topic Review
Bioactive Polymers and Cardiovascular Therapy
Coronary heart disease remains one of the leading causes of death in most countries. Healthcare improvements have seen a shift in the presentation of disease with a reducing number of ST-segment elevation myocardial infarctions (STEMIs), largely due to earlier reperfusion strategies such as percutaneous coronary intervention (PCI). Stents have revolutionized the care of these patients, but the long-term effects of these devices have been brought to the fore. The conceptual and technologic evolution of these devices from bare-metal stents led to the creation and wide application of drug-eluting stents; further research introduced the idea of polymer-based resorbable stents.
  • 469
  • 17 Mar 2021
Topic Review
Electrospun Polymer Materials with Fungicidal Activity
There has been special interest in innovative technologies such as polymer melt or solution electrospinning, electrospraying, centrifugal electrospinning, coaxial electrospinning, and others. Applying these electrokinetic methods, micro- or nanofibrous materials with high specific surface area, high porosity, and various designs for diverse applications could be created. 
  • 468
  • 22 Sep 2022
Topic Review
Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents
Polymeric nanomaterials have been widely studied as carriers for constructing antimicrobial agent delivery systems and have shown advantages including high biocompatibility, sustained release, targeting and improved bioavailability. 
  • 467
  • 20 Jan 2022
Topic Review
Evaluation of PIL Graft Conjugates
In vitro cytotoxicity of polymer-carriers, which in the side chains contain the cholinum ionic liquid units with chloride (Cl) or pharmaceutical anions dedicated for antituberculosis therapy, i.e., p-aminosalicylate (PAS) and clavulanate (CLV), was investigated. The carriers and drug conjugates were examined against human bronchial epithelial cells (BEAS-2B) and adenocarcinomic human alveolar basal epithelial cells (A549) as an experimental model cancer cell line possibly coexisting in tuberculosis. The cytotoxicity was evaluated by MTT test and confluency index, as well as by the cytometric analyses, including Annexin-V FITC apoptosis assay. The polymer systems showed supporting activity towards the normal cells and no tumor progress, especially at the highest concentration (100 μg/mL). The analysis of cell death did not show meaningful changes in the case of the BEAS-2B, whereas in the A549 cell line, the cytostatic activity was observed, especially for the drug-free carriers, causing death in up to 80% of cells. This can be regulated by the polymer structure, including the content of cationic units, side-chain length and density, as well as the type and content of pharmaceutical anions. The results of MTT tests, confluency, as well as cytometric analyses, distinguished the polymer systems with Cl/PAS/CLV containing 26% of grafting degree and 43% of ionic units or 46% of grafting degree and 18% of ionic units as the optimal systems.
  • 464
  • 11 Oct 2021
  • Page
  • of
  • 46
ScholarVision Creations