Topic Review
Locating an Electron with an Ideal Microscope
A photon (from grc φῶς, φωτός (Script error: No such module "Ancient Greek".) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless,[lower-alpha 1] so they always move at the speed of light in vacuum, 299792458 m/s (or about 186,282 mi/s). The photon belongs to the class of bosons. Like all elementary particles, photons are currently best explained by quantum mechanics, and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, Planck proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. Subsequently, many other experiments validated Einstein's approach. In the Standard Model of particle physics, photons and other elementary particles are described as a necessary consequence of physical laws having a certain symmetry at every point in spacetime. The intrinsic properties of particles, such as charge, mass, and spin, are determined by gauge symmetry. The photon concept has led to momentous advances in experimental and theoretical physics, including lasers, Bose–Einstein condensation, quantum field theory, and the probabilistic interpretation of quantum mechanics. It has been applied to photochemistry, high-resolution microscopy, and measurements of molecular distances. Moreover, photons have been studied as elements of quantum computers, and for applications in optical imaging and optical communication such as quantum cryptography.
  • 463
  • 09 Nov 2022
Topic Review
Paschen's Law
Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. It is named after Friedrich Paschen who discovered it empirically in 1889. Paschen studied the breakdown voltage of various gases between parallel metal plates as the gas pressure and gap distance were varied: For a given gas, the voltage is a function only of the product of the pressure and gap length. The curve he found of voltage versus the pressure-gap length product (right) is called Paschen's curve. He found an equation that fit these curves, which is now called Paschen's law. At higher pressures and gap lengths, the breakdown voltage is approximately proportional to the product of pressure and gap length, and the term Paschen's law is sometimes used to refer to this simpler relation. However, this is only roughly true, over a limited range of the curve.
  • 7.6K
  • 09 Nov 2022
Topic Review
Kikuchi Lines
Kikuchi lines are patterns of electrons formed by scattering. They pair up to form bands in electron diffraction from single crystal specimens, there to serve as "roads in orientation-space" for microscopists uncertain of what they are looking at. In transmission electron microscopes, they are easily seen in diffraction from regions of the specimen thick enough for multiple scattering. Unlike diffraction spots, which blink on and off as one tilts the crystal, Kikuchi bands mark orientation space with well-defined intersections (called zones or poles) as well as paths connecting one intersection to the next. Experimental and theoretical maps of Kikuchi band geometry, as well as their direct-space analogs e.g. bend contours, electron channeling patterns, and fringe visibility maps are increasingly useful tools in electron microscopy of crystalline and nanocrystalline materials. Because each Kikuchi line is associated with Bragg diffraction from one side of a single set of lattice planes, these lines can be labeled with the same Miller or reciprocal-lattice indices that are used to identify individual diffraction spots. Kikuchi band intersections, or zones, on the other hand are indexed with direct-lattice indices i.e. indices which represent integer multiples of the lattice basis vectors a, b and c. Kikuchi lines are formed in diffraction patterns by diffusely scattered electrons, e.g. as a result of thermal atom vibrations. The main features of their geometry can be deduced from a simple elastic mechanism proposed in 1928 by Seishi Kikuchi, although the dynamical theory of diffuse inelastic scattering is needed to understand them quantitatively. In x-ray scattering, these lines are referred to as Kossel lines (named after Walther Kossel).
  • 2.0K
  • 09 Nov 2022
Topic Review
Astronomy & Astrophysics
Astronomy & Astrophysics is a peer-reviewed scientific journal covering theoretical, observational, and instrumental astronomy and astrophysics. The journal is run by a Board of Directors representing 27 sponsoring countries plus a representative of the European Southern Observatory. The main editors of A&A are the editor-in-chief,  Thierry Forveille (fr); the Letters editor-in-chief, João Alves; and the managing editor David Elbaz. The journal is published by EDP Sciences in 12 issues per year. With an impact factor of 5.802 (2020), A&A is one of the most important academic journals in its field. Several sections of the journal are available in Open Access, and the latest issue is also available for free online reading on the journal website.
  • 460
  • 09 Nov 2022
Topic Review
(6545) 1986 TR6
(6545) 1986 TR6, provisional designation 1986 TR6, is a Jupiter trojan from the Greek camp, approximately 53 kilometers (33 miles) in diameter. It was discovered on 5 October 1986, by Slovak astronomer Milan Antal at the Piwnice Astronomical Observatory in Poland. The dark D-type asteroid has a rotation period of 16.3 hours and belongs to the 90 largest Jupiter trojans. It has not been named since its numbering in September 1995.
  • 382
  • 09 Nov 2022
Topic Review
J/Psi Meson
The J/ψ (J/psi) meson /ˈdʒeɪ ˈsaɪ ˈmiːzɒn/ or psion is a subatomic particle, a flavor-neutral meson consisting of a charm quark and a charm antiquark. Mesons formed by a bound state of a charm quark and a charm anti-quark are generally known as "charmonium". The J/ψ is the most common form of charmonium, due to its spin of 1 and its low rest mass. The J/ψ has a rest mass of 3.0969 GeV/c2, just above that of the ηc (2.9836 GeV/c2), and a mean lifetime of 7.2×10−21 s. This lifetime was about a thousand times longer than expected. Its discovery was made independently by two research groups, one at the Stanford Linear Accelerator Center, headed by Burton Richter, and one at the Brookhaven National Laboratory, headed by Samuel Ting of MIT. They discovered they had actually found the same particle, and both announced their discoveries on 11 November 1974. The importance of this discovery is highlighted by the fact that the subsequent, rapid changes in high-energy physics at the time have become collectively known as the "November Revolution". Richter and Ting were awarded the 1976 Nobel Prize in Physics.
  • 1.3K
  • 09 Nov 2022
Topic Review
Thermodynamics of the Universe
The thermodynamics of the universe is dictated by which form of energy dominates it - relativistic particles which are referred to as radiation, or non-relativistic particles which are referred to as matter. The former are particles whose rest mass is zero or negligible compared to their energy, and therefore move at the speed of light or very close to it; the latter are particles whose kinetic energy is much lower than their rest mass and therefore move much slower than the speed of light. The intermediate case is not treated well analytically.
  • 1.0K
  • 09 Nov 2022
Topic Review
Exoplanetology
Exoplanetology, or exoplanetary science, is an integrated field of astronomical science dedicated to the search for and study of exoplanets (extrasolar planets). It employs an interdisciplinary approach which includes astrobiology, astrophysics, astronomy, astrochemistry, astrogeology, geochemistry, and planetary science.
  • 2.1K
  • 09 Nov 2022
Topic Review
Spin-½
In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks. The dynamics of spin-1/2 objects cannot be accurately described using classical physics; they are among the simplest systems which require quantum mechanics to describe them. As such, the study of the behavior of spin-1/2 systems forms a central part of quantum mechanics.
  • 2.1K
  • 09 Nov 2022
Topic Review
Characterization of MXene's Terminations
MXene, 2D transition metal carbides, nitrides, and carbonitrides with a unique 2D structure, inspired a series of function applications related to energy storage and conversion, biometrics and sensing, lighting, purification, and separation. Its surface terminations are confined by the adjacent MXene layers, and form the 2D planar space with symmetrical surfaces, which is similar to a 2D nanoreactor that can be utilized and determined MXene’s function. Accurate characterization of MXene surface terminations is the prerequisite for studying the regulatory methods and the influence of properties and performance. Because the surface termination of MXene presents two-dimensional plane distribution and the collision probability of atoms, molecules, electrons, and optical signals is low. MXene prepared by chemical methods has certain impurity content. In addition, most surface terminations do not exist in a stable state, which leads to the difficulty of the accurate characterization of MXene surface terminations. At present, XPS, EDX, XAS and EELS are often used for qualitative and quantitative analysis of MXene surface terminations.
  • 1.7K
  • 09 Nov 2022
  • Page
  • of
  • 131
ScholarVision Creations