Topic Review
Large Extra Dimension
In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a so called membrane floating in 11-dimensional space. It is then suggested that the other forces of nature (the electromagnetic force, strong interaction, and weak interaction) operate within this membrane and its four dimensions, while gravity can operate across all 11 dimensions. This would explain why gravity is very weak compared to the other fundamental forces. This is a radical theory given that the other 7 dimensions, which we do not observe, previously have been assumed to be very small (about a planck-length), while this theory asserts that they might be very large. The model was proposed by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998. Attempts to test the theory are executed by smashing together two protons in the Large Hadron Collider so that they disperse and release elementary particles. If a postulated graviton appeared after a collision, for such a particle to disappear, and its disappearance be observed, that would suggest that the graviton had escaped into other dimensions beyond our universe's observable four. No experiments from the Large Hadron Collider have been decisive thus far. However, the operation range of the LHC (13 TeV collision energy) covers only a small part of the predicted range in which evidence for LED would be recorded (a few TeV to 1016 TeV). This suggests that the theory might be more thoroughly tested with advanced technology.
  • 407
  • 01 Dec 2022
Biography
Nima Arkani-Hamed
Nima Arkani-Hamed (Persian: نیما ارکانی حامد‎; born April 5, 1972) is an Iranian-American-Canadian[1][2] theoretical physicist, with interests in high-energy physics, quantum field theory, string theory, cosmology and collider physics. Arkani-Hamed is a member of the permanent faculty at the Institute for Advanced Study in Princeton, New Jersey.[3] He is also director of The Cent
  • 475
  • 01 Dec 2022
Topic Review
Atmospheric-pressure Chemical Ionization
Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites.
  • 1.6K
  • 01 Dec 2022
Topic Review
Shopping Hours
Customs and regulations for shopping hours for sunday (times that shops are open) vary from countries to cities.
  • 816
  • 01 Dec 2022
Biography
Carl H. Brans
Carl Henry Brans (/brænz/; born December 13, 1935) is an American mathematical physicist best known for his research into the theoretical underpinnings of gravitation elucidated in his most widely publicized work, the Brans–Dicke theory. A Texas , born in Dallas, Carl Brans spent his academic career in neighboring Louisiana, graduating in 1957 from Loyola University New Orleans. Having obt
  • 382
  • 01 Dec 2022
Topic Review
Mars Helicopter Ingenuity
Ingenuity (also known as the Mars Helicopter) is a robotic helicopter that is planned to be used to test the technology to scout interesting targets on Mars, and help plan the best driving route for future Mars rovers. The small drone helicopter is planned for deployment in 2021 from the Perseverance rover as part of the Mars 2020 mission. It is expected to fly up to five times during its 30-day test campaign, early in the rover's mission, as it is primarily a technology demonstration. Each flight is planned to take no more than three minutes, at altitudes ranging from 3 to 10 m above the ground. It could potentially cover a distance of up to 300 metres (980 ft) per flight. It can use autonomous control and communicate with the Perseverance rover directly after each landing. If it works as expected, NASA could build on the design for future Mars aerial missions. MiMi Aung is the project lead. Other contributors include AeroVironment Inc., NASA Ames Research Center, and NASA Langley Research Center.
  • 724
  • 01 Dec 2022
Topic Review
Introduction to the Mathematics of General Relativity
The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates. For an introduction based on the example of particles following circular orbits about a large mass, nonrelativistic and relativistic treatments are given in, respectively, Newtonian motivations for general relativity and Theoretical motivation for general relativity.
  • 795
  • 01 Dec 2022
Topic Review
Frost Diagram
A Frost diagram or Frost–Ebsworth diagram is a type of graph used by inorganic chemists in electrochemistry to illustrate the relative stability of a number of different oxidation states of a particular substance. The graph illustrates the free energy vs oxidation state of a chemical species. This effect is dependent on pH, so this parameter also must be included. The free energy is determined by the oxidation–reduction half-reactions. The Frost diagram allows easier comprehension of these reduction potentials than the earlier-designed Latimer diagram, because the “lack of additivity of potentials” was confusing. The free energy ΔG° is related to reduction potential E in the graph by given formula: ΔG° = −nFE° or nE° = −ΔG°/F, where n is the number of transferred electrons, and F is Faraday constant (F = 96,485 J/(V·mol)). The Frost diagram is named after Arthur Atwater Frost (de), who originally created it as a way to "show both free energy and oxidation potential data conveniently" in a 1951 paper.
  • 3.5K
  • 01 Dec 2022
Topic Review
High Entropy Alloys
High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and the like in various steels. Hence, high entropy alloys are a novel class of materials. The term “high-entropy alloys” was coined because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. These alloys are currently the focus of significant attention in materials science and engineering because they have potentially desirable properties. Furthermore, research indicates that some HEAs have considerably better strength-to-weight ratios, with a higher degree of fracture resistance, tensile strength, as well as corrosion and oxidation resistance than conventional alloys. Although HEAs have been studied since the 1980s, research substantially accelerated in the 2010s.
  • 2.5K
  • 01 Dec 2022
Topic Review
Osmium-194
Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.56×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago. There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 94 days. There are also nine known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
  • 331
  • 01 Dec 2022
  • Page
  • of
  • 130
Video Production Service