Biography
Juan Gualterio Roederer
Juan G. Roederer is a professor of physics emeritus at the University of Alaska Fairbanks (UAF). His research fields are space physics, psychoacoustics, science policy and information theory. He conducted pioneering research on solar cosmic rays, on the theory of earth’s radiation belts, neural networks for pitch processing, and currently on the foundations of information theory. He is also an
  • 326
  • 06 Dec 2022
Biography
Barbara Jacak
Barbara Jacak is a nuclear physicist who uses heavy ion collisions for fundamental studies of hot, dense nuclear matter. She is Director of the Nuclear Science Division, Lawrence Berkeley National Laboratory, and a professor of Physics at UC Berkeley.[1] Before going to Berkeley, she was a member of the Department of Physics and Astronomy at Stony Brook University, where she held the rank of Dis
  • 863
  • 06 Dec 2022
Topic Review
Transit of Venus, 1639
The first known observations and recording of a transit of Venus were made in 1639 by the English astronomers Jeremiah Horrocks and his friend and correspondent William Crabtree. The pair made their observations independently on 4 December that year (24 November under the Julian calendar then used in England); Horrocks from Carr House, then in the village of Much Hoole, Lancashire, and Crabtree from his home in Broughton, near Manchester. The friends, followers of the new astronomy of Johannes Kepler, were self-taught mathematical astronomers who had worked methodically to correct and improve Kepler's Rudolphine tables by observation and measurement. In 1639, Horrocks was the only astronomer to realise that a transit of Venus was imminent; others became aware of it only after the event when Horrocks's report of it was circulated. Although the friends both died within five years of making their observations, their ground-breaking work was influential in establishing the size of the Solar System; for this and their other achievements Horrocks and Crabtree, along with their correspondent William Gascoigne, are considered to be the founding fathers of British research astronomy.
  • 550
  • 06 Dec 2022
Topic Review
Stress Measures
The most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several other measures of stress can be defined. Some such stress measures that are widely used in continuum mechanics, particularly in the computational context, are: The Kirchhoff stress (τ). The Nominal stress (N). The first Piola-Kirchhoff stress (P). This stress tensor is the transpose of the nominal stress (P=NT). The second Piola-Kirchhoff stress or PK2 stress (S). The Biot stress (T).
  • 526
  • 06 Dec 2022
Topic Review
Transmission Electron Microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology. TEM instruments have multiple operating modes including conventional imaging, scanning TEM imaging (STEM), diffraction, spectroscopy, and combinations of these. Even within conventional imaging, there are many fundamentally different ways that contrast is produced, called "image contrast mechanisms". Contrast can arise from position-to-position differences in the thickness or density ("mass-thickness contrast"), atomic number ("Z contrast", referring to the common abbreviation Z for atomic number), crystal structure or orientation ("crystallographic contrast" or "diffraction contrast"), the slight quantum-mechanical phase shifts that individual atoms produce in electrons that pass through them ("phase contrast"), the energy lost by electrons on passing through the sample ("spectrum imaging") and more. Each mechanism tells the user a different kind of information, depending not only on the contrast mechanism but on how the microscope is used—the settings of lenses, apertures, and detectors. What this means is that a TEM is capable of returning an extraordinary variety of nanometer- and atomic-resolution information, in ideal cases revealing not only where all the atoms are but what kinds of atoms they are and how they are bonded to each other. For this reason TEM is regarded as an essential tool for nanoscience in both biological and materials fields. The first TEM was demonstrated by Max Knoll and Ernst Ruska in 1931, with this group developing the first TEM with resolution greater than that of light in 1933 and the first commercial TEM in 1939. In 1986, Ruska was awarded the Nobel Prize in physics for the development of transmission electron microscopy.
  • 2.9K
  • 05 Dec 2022
Topic Review
Near-Earth Object Surveillance Mission
The Near-Earth Object Surveillance Mission (NEOSM), formerly called Near-Earth Object Camera (NEOCam) is a planned space-based infrared telescope designed to survey the Solar System for potentially hazardous asteroids. The NEO Surveillance Mission will be carried out by the NEO Surveyor spacecraft, which will survey from the Sun–Earth L1 (inner) Lagrange point, allowing it to look close to the Sun and see objects inside Earth's orbit. The mission will be a successor to the NEOWISE mission; the principal investigator is also NEOWISE's principal investigator, Amy Mainzer at the University of Arizona. Since first proposed in 2006, the concept unsuccessfully competed repeatedly for NASA funding against science missions unrelated to planetary defense, despite a 2005 US Congressional directive to NASA. In 2019, it was decided to implement this mission by the Planetary Defense Coordination Office since it is a public safety issue. The Jet Propulsion Laboratory will lead development of the mission.
  • 486
  • 05 Dec 2022
Topic Review
Astronomy
Astronomy (from grc ἀστρονομία (Script error: No such module "Ancient Greek".) 'science that studies the laws of the stars') is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Babylonians, Greeks, Indians, Egyptians, Chinese, Maya, and many ancient indigenous peoples of the Americas. In the past, astronomy included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars. Nowadays, professional astronomy is often said to be the same as astrophysics. Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects. This data is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results. Astronomy is one of the few sciences in which amateurs play an active role. This is especially true for the discovery and observation of transient events. Amateur astronomers have helped with many important discoveries, such as finding new comets.
  • 1.3K
  • 05 Dec 2022
Topic Review
Soyuz TMA-03M
Soyuz TMA-03M was a spaceflight to the International Space Station (ISS). It launched on 21 December 2011 from Site One at the Baikonur Cosmodrome, Kazakhstan, carrying three members of Expedition 30 to the ISS. TMA-03M was the 112th flight of a Russian Soyuz spacecraft, since the first in 1967, and the third flight of the modernised Soyuz-TMA-M version. The docking with the International Space Station took place at 19:19 Moscow Time on 23 December, three minutes ahead of schedule. The crew were Oleg Kononenko (Russia , commander), André Kuipers (the Netherlands) and Donald Pettit (United States ). The Soyuz remained aboard the space station for the Expedition 30 increment to serve as an emergency escape vehicle if needed. The capsule used in the mission can be seen at the Space Expo visitors center at the European Space Research and Technology Centre in Noordwijk, Netherlands.
  • 491
  • 05 Dec 2022
Topic Review
List of Jupiter Trojans (Trojan Camp) (1–100000)
This is a partial list of Jupiter's L5 trojans (60° behind Jupiter) with numbers 1–100000 (also see main page).
  • 562
  • 05 Dec 2022
Topic Review
Electro-gyration
The electrogyration effect is the spatial dispersion phenomenon, that consists in the change of optical activity (gyration) of crystals by a constant or time-varying electric field. Being a spatial dispersion effect, the induced optical activity exhibit different behavior under the operation of wave vector reversal, when compared with the Faraday effect: the optical activity increment associated with the electrogyration effect changes its sign under that operation, contrary to the Faraday effect. Formally, it is a special case of gyroelectromagnetism obtained when the magnetic permeability tensor is diagonal. 
  • 773
  • 05 Dec 2022
  • Page
  • of
  • 130
Video Production Service