1000/1000
Hot
Most Recent
The electrogyration effect is the spatial dispersion phenomenon, that consists in the change of optical activity (gyration) of crystals by a constant or time-varying electric field. Being a spatial dispersion effect, the induced optical activity exhibit different behavior under the operation of wave vector reversal, when compared with the Faraday effect: the optical activity increment associated with the electrogyration effect changes its sign under that operation, contrary to the Faraday effect. Formally, it is a special case of gyroelectromagnetism obtained when the magnetic permeability tensor is diagonal.
The changes in the optical activity sign induced by the external electric field have been observed for the first time in ferroelectric crystals LiH3(SeO4)2 by H. Futama and R. Pepinsky in 1961,[1] while switching enantiomorphous ferroelectric domains (the change in the point symmetry group of the crystal being 2/m«m). The observed phenomenon has been explained as a consequence of specific domain structure (a replacement of optic axes occurred under the switching), rather than the electrogyration induced by spontaneous polarization. The first description of electrogyration effect induced by the biasing field and spontaneous polarization at ferroelectric phase transitions has been proposed by K. Aizu in 1963 on the basis of third-rank axial tensors [2] (the manuscript received on September 9, 1963). Probably, K. Aizu has been the first who defined the electro-gyration effect (”the rate of change of the gyration with the biasing electric field at zero value of the biasing electric field is provisionally referred to as “electrogyration””) and introduced the term “electrogyration” itself. Almost simultaneously with K. Aizu, I.S. Zheludev has suggested tensor description of the electrogyration in 1964 [3] (the manuscript received on February 21, 1964). In this paper the electrogyration has been referred to as “electro-optic activity”. In 1969, O.G. Vlokh has measured for the first time the electrogyration effect induced by external biasing field in the quartz crystal and determined the coefficient of quadratic electro-gyration effect [4] (the manuscript received on July 7, 1969).
Thus, the electrogyration effect has been predicted simultaneously by Aizu K. and Zheludev I.S. in 1963–1964 and revealed experimentally in quartz crystals by Vlokh O.G. in 1969.[4] .[5][6][7] Later in 2003, the gyroelectricity has been extended to gyroelectromagnetic media,[8] which account for ferromagnetic semiconductors and engineered metamaterials, for which gyroelectricity and gyromagnetism (Faraday effect) may occur at the same time.
The electric field and the electric displacement vectors of electromagnetic wave propagating in gyrotropic crystals may be written respectively as:
[math]\displaystyle{ E_{i}=B_{ij}^{0}D_{j}+\tilde\delta_{ijk}\frac{\partial D_{j}}{\partial x_{k}}=B_{ij}^{0}D_{j}+(ie_{ijl}\tilde{g}_{lk}k_k)D_{j}\, }[/math], (1)
or
[math]\displaystyle{ D_{i}=\epsilon_{ij}^{0}E_{j}+\delta_{ijk}\frac{\partial E_{j}}{\partial x_{k}}=\epsilon_{ij}^{0}E_{j}+(ie_{ijl}{g}_{lk}k_k)E_{j}\, }[/math], (2)
where
[math]\displaystyle{ \rho=\frac{\pi}{\lambda n}g_{lk}l_{l}l_{k}=\frac{\pi}{\lambda n}G\, }[/math], (3)
where
[math]\displaystyle{ \Delta g_{lk}=\gamma _{lkm}E_{m}+\beta _{lkmn}E_{m}E_{n}\, }[/math], (4)
where
[math]\displaystyle{ \Delta \rho=\frac{\pi}{\lambda n}g_{lk}l_{l}l_{k}=\frac{\pi}{\lambda n}\Delta G=\frac{\pi}{\lambda n}(\gamma _{lkm}E_{m}+\beta _{lkmn}E_{m}E_{n})l_{l}l_{k} }[/math]. (5)
The electrogyration effect may be also induced by spontaneous polarization
[math]\displaystyle{ \Delta \rho=\frac{\pi}{\lambda n}g_{lk}l_{l}l_{k}=\frac{\pi}{\lambda n}\Delta G=\frac{\pi}{\lambda n}(\tilde\gamma _{lkm}P_{m}^{s}+\tilde\beta _{lkmn}P_{m}^{s}P_{n}^{s})l_{l}l_{k} }[/math]. (6)
The electrogyration effect can be easy explained on the basis of Curie and Neumann symmetry principles. In the crystals that exhibit centre of symmetry, natural gyration can not exist, since, due to the Neumann principle, the point symmetry group of the medium should be a subgroup of the symmetry group that describes the phenomena, which are properties of this medium. As a result, the gyration tensor possessing a symmetry of second-rank axial tensor -
In a general case of light propagation along optically anisotropic directions, the eigenwaves become elliptically polarized in the presence of electrogyration effect, including rotation of the azimuth of polarization ellipse. Then the corresponding ellipticity
[math]\displaystyle{ \kappa =\frac{\Delta G}{2\Delta n\overline{n}}\, }[/math], (7)
[math]\displaystyle{ \tan 2(\alpha -\chi )=\frac{2\kappa }{1+\kappa ^2}\tan \boldsymbol{\Gamma } \left ( 1+\frac{P\tan 2\alpha +(1-R)}{R+\tan ^22\alpha } \right )\, }[/math], (8)
where
[math]\displaystyle{ 2(\alpha -\chi )=\boldsymbol\Gamma \, }[/math], (9)
or
[math]\displaystyle{ \rho d=\alpha -\frac{\boldsymbol\Gamma}{2}\, }[/math], (10)
where
[math]\displaystyle{ \tan 2\chi =-2\kappa \sin \boldsymbol\Gamma\, }[/math], (11)
or
[math]\displaystyle{ g_{kl}=2\chi \Delta n\overline{n}\, }[/math]. (12)
are often used. According to Eq.(11), when the light propagates along anisotropic directions, the gyration (or the electro-gyration) effects manifest themselves as oscillations of the azimuth of polarization ellipse occurring with changing phase retardation
The electrogyration effect has been revealed for the first time in quartz crystals [2] as an effect quadratic in the external field. Later on, both the linear and quadratic [10] electrogyrations has been studied in the dielectric (