Topic Review
Nanobiotechnology
Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies. This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created. However, as with nanotechnology and biotechnology, bionanotechnology does have many potential ethical issues associated with it. The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells. Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.
  • 1.6K
  • 11 Oct 2022
Topic Review
Tonti Diagram
The Tonti diagram, created by the Italian physicist and mathematician Enzo Tonti, is a diagram that classifies variables and equations of physical theories of classical and relativistic physics. The theories involved are: particle dynamics, analytical mechanics, mechanics of deformable solids, fluid mechanics, electromagnetism, gravitation, heat conduction, and irreversible thermodynamics. The classification stems from the observation that each physical variable has a well-defined association with a space and a time element, as shown in Fig. 1, which can be grasped from the corresponding global variable and from its measuring process.
  • 1.6K
  • 29 Sep 2022
Topic Review
Spin
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles (hadrons) and atomic nuclei. Spin is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. The orbital angular momentum operator is the quantum-mechanical counterpart to the classical angular momentum of orbital revolution and appears when there is periodic structure to its wavefunction as the angle varies. For photons, spin is the quantum-mechanical counterpart of the polarization of light; for electrons, the spin has no classical counterpart. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum. The existence of the electron spin can also be inferred theoretically from the spin–statistics theorem and from the Pauli exclusion principle—and vice versa, given the particular spin of the electron, one may derive the Pauli exclusion principle. Spin is described mathematically as a vector for some particles such as photons, and as spinors and bispinors for other particles such as electrons. Spinors and bispinors behave similarly to vectors: they have definite magnitudes and change under rotations; however, they use an unconventional "direction". All elementary particles of a given kind have the same magnitude of spin angular momentum, though its direction may change. These are indicated by assigning the particle a spin quantum number. The SI unit of spin is the same as classical angular momentum (i.e., N·m·s, J·s, or kg·m2·s−1). In practice, spin is given as a dimensionless spin quantum number by dividing the spin angular momentum by the reduced Planck constant ħ, which has the same dimensions as angular momentum, although this is not the full computation of this value. Very often, the "spin quantum number" is simply called "spin". The fact that it is a quantum number is implicit.
  • 1.6K
  • 27 Oct 2022
Topic Review
List of Largest Stars
Below is a list of the largest stars currently known, ordered by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi). The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed. Uncertainties remain with the membership and order of the list, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods. All the sizes stated in this list have various inaccuracies and may be disputed. This list is still a work in progress and various parameters are extremely disputed.
  • 1.6K
  • 21 Nov 2022
Topic Review
Extinction
In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars that lie near the plane of the Milky Way and are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies (photometric system) is roughly 1.8 magnitudes per kiloparsec. For Earth-bound observers, extinction arises both from the interstellar medium (ISM) and the Earth's atmosphere; it may also arise from circumstellar dust around an observed object. Strong extinction in earth's atmosphere of some wavelength regions (such as X-ray, ultraviolet, and infrared) is overcome by the use of space-based observatories. Since blue light is much more strongly attenuated than red light, extinction causes objects to appear redder than expected, a phenomenon referred to as interstellar reddening.
  • 1.6K
  • 18 Oct 2022
Topic Review
Perovskite Semiconductor Field–Effect Transistors
Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. 
  • 1.6K
  • 27 Jul 2022
Topic Review
A Message from Earth (2008)
A Message from Earth (AMFE) is a high-powered digital radio signal that was sent on 9 October 2008 towards Gliese 581c, a large terrestrial extrasolar planet orbiting within the Gliese 581 system. The signal is a digital time capsule containing 501 messages that were selected through a competition on the social networking site Bebo. The message was sent using the RT-70 radar telescope. The signal will reach the planet Gliese 581c in early 2029. More than half a million people including celebrities and politicians participated in the AMFE project, which was the world's first digital time capsule where the content was selected by the public. As of 1 February 2018, the message has traveled 62.43 trillion kilometers of the total 192 trillion kilometers, which is 33.5% of the distance to the Gliese 581 system. On 13 February 2015, scientists (including David Grinspoon, Seth Shostak, and David Brin) at an annual meeting of the American Association for the Advancement of Science, discussed Active SETI and whether transmitting a message to possible intelligent extraterrestrials in the Cosmos was a good idea; That same week, a statement was released, signed by many in the SETI community, that a "worldwide scientific, political and humanitarian discussion must occur before any message is sent". However neither Frank Drake, nor Seth Shostak signed this appeal. On 28 March 2015, a related essay with some different point of view was written by Seth Shostak and published in The New York Times .
  • 1.6K
  • 21 Oct 2022
Topic Review
Hidden Jahn-Teller and Pseudo-Jahn-Teller effects
The source of spontaneous symmetry breaking (SSB) in polyatomic systems, attributed to the Jahn-Teller effect (in electronic degenerate states) or to the pseudo-Jahn-Teller effect (under the condition of pseudodegeneracy), is complemented with the notions of hidden Jahn-Teller effect (h-JTE) and hidden pseudo-Jahn-Teller effect (h-PJTE) to stand for the cases when neither electronic degeneracy, nor pseudodegeneracy is present, but the system is still spontaneously distorted. The h-JTE and h-PJTE occur due to, respectively, the JTE and PJTE in the excited states of the undistorted system, but being strong enough, they penetrate its ground state forming a stable configuration with lower symmetry and (possibly) different spin.
  • 1.5K
  • 11 Dec 2020
Topic Review
Emergency Position-Indicating Radiobeacon Station
An emergency position-indicating radiobeacon (EPIRB) is a type of emergency locator beacon, a portable battery powered radio transmitter used in emergencies to locate airplanes, vessels, and persons in distress and in need of immediate rescue. In the event of an emergency, such as the ship sinking or an airplane crash, the transmitter is activated and begins transmitting a continuous radio signal which is used by search and rescue teams to quickly locate the emergency and render aid. The signal is detected by satellites operated by an international consortium of rescue services, COSPAS-SARSAT. The basic purpose of this system is to help rescuers find survivors within the so-called "golden day" (the first 24 hours following a traumatic event) during which the majority of survivors can usually be saved. The feature distinguishing modern EPIRBs, often called GPIRBs, from other types of emergency beacon is that it contains a GPS receiver and broadcasts its position, usually accurate within 100 metres (330 ft), to facilitate location. The standard frequency of a modern EPIRB is 406 MHz. It is an internationally regulated mobile radiocommunication service that aids search and rescue operations to detect and locate distressed boats, aircraft, and people. It is distinct from a Satellite emergency position-indicating radiobeacon station. The first form of these beacons was the 121.500 MHz ELT, which was designed as an automatic locator beacon for crashed military aircraft. These beacons were first used in the 1950s by the U.S. military and were mandated for use on many types of commercial and general aviation aircraft beginning in the early 1970s. The frequency and signal format used by the ELT beacons was not designed for satellite detection, which resulted in a system with poor location detection abilities and with long delays in detection of activated beacons. The satellite detection network was built after the ELT beacons were already in general use, with the first satellite not being launched until 1982, and even then, the satellites only provided detection, with location accuracy being roughly 20 kilometres (12 mi). The technology was later expanded to cover use on vessels at sea (EPIRB), individual persons (PLB and, starting in 2016, MSLD). All have migrated from using 121.500 MHz as their primary frequency to using 406 MHz, which was designed for satellite detection and location. Since the inception of Cospas-Sarsat in 1982, distress radiobeacons have assisted in the rescue of over 28,000 people in more than 7,000 distress situations. In 2010 alone, the system provided information used to rescue 2,388 persons in 641 distress situations.
  • 1.5K
  • 27 Oct 2022
Topic Review
N-Type Organic Semiconductors
This work was intended to enlarge the gates toward green organic technologies at room temperature, searching for new types of semiconductors with low toxicity and simple molecular organization. In our previous studies, para-aminobenzoic acid was used to construct a p-type green semiconductor. A non-toxic organic compound, acting as an electron donor, is sulpho-salicylic acid. SSA can be efficiently attached to the external shell of a ferrite (Fe3O4) nanocore, providing Fe3O4–SSA nanoparticles. This is a N-Type Organic Semiconductor - made by green technologies and used to construct a simple thin film transistor. 
  • 1.5K
  • 22 Oct 2020
  • Page
  • of
  • 130
Video Production Service