Topic Review
Mechanical Properties of BCC-Structured High-Entropy Alloys
A new metallurgical strategy was introduced to develop advanced materials with outstanding performance—high-entropy alloys (HEAs). Today, HEAs contain five or more multiple principle metallic elements in equal or near-equal atomic percentages. HEAs’ four core effects—high configurational entropy, sluggish diffusion, severe lattice distortion, and the cock-tail effect—are mainly responsible for their various physical and mechanical properties. HEAs present promising properties, such as high strength and fracture toughness at room temperature and high temperatures and have excellent wear resistance, and corrosion resistance, along with high-temperature oxidation.
  • 2.1K
  • 28 Mar 2022
Topic Review
The Nitrogen Bond
The nitrogen bond in chemical systems occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound nitrogen atom in a molecular entity and a nucleophile in another, or the same molecular entity. It is the first member of the family of pnictogen bonds formed by the first atom of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction.
  • 2.2K
  • 25 Mar 2022
Topic Review
Applications of Liquid Crystals-Based Sensors
Liquid crystals are a class of chemical substances that exist in intermediate states between crystalline solids and liquids. They thus share the anisotropic properties of crystalline solids as well as fluid properties of isotropic liquids. 
  • 3.2K
  • 23 Mar 2022
Topic Review
Optical Polarization-Based Measurement for Peptides and Amino Acids
Polarization-based optical measurement methods are very useful in the analysis of the molecular orientations of materials, and, thus, these methods are implemented in numerous material-science studies, including into the characterization of amino acids’ (SAPA)  micro- and nanostructures.
  • 628
  • 21 Mar 2022
Topic Review
Electrification Mechanism of Smart Textile Triboelectric Nanogenerators
Triboelectrification or contact electrification is a universal phenomenon in which two materials contact each other. A triboelectric nanogenerator (TENG) is a new type of energy collection technology first invented by Wang’s team in 2012. By coupling triboelectric charging and electrostatic induction, various forms of irregular, low-frequency, and distributed mechanical energy, which is common in daily life but usually wasted, can be effectively converted into electric energy, including human movement, vibration, wind, mechanical triggering, water waves, and so on.
  • 853
  • 21 Mar 2022
Topic Review
Photoacoustic Approach in the Characterization of Nanostructured Materials
The photoacoustic (PA) effect is the generation of pressure perturbations in a medium due to its heating with non-stationary electromagnetic radiation. A new generation of sensors can be engineered based on the sensing of several markers to satisfy the conditions of the multimodal detection principle. From this point of view, photoacoustic-based sensing approaches are essential. The photoacoustic effect relies on the generation of light-induced deformation (pressure) perturbations in media, which is essential for sensing applications since the photoacoustic response is formed due to a contrast in the optical, thermal, and acoustical properties. It is also particularly important to mention that photoacoustic light-based approaches are flexible enough for the measurement of thermal/elastic parameters. Moreover, the photoacoustic approach can be used for imaging and visualization in material research and biomedical applications. The advantages of photoacoustic devices are their compact sizes and the possibility of on-site measurements, enabling the online monitoring of material parameters. The latter has significance for the development of various sensing applications, including biomedical ones, such as monitoring of the biodistribution of biomolecules. To extend sensing abilities and to find reliable measurement conditions, one needs to clearly understand all the phenomena taking place during energy transformation during photoacoustic signal formation. 
  • 745
  • 21 Mar 2022
Topic Review
Plasma Modeling and Prebiotic Chemistry
The plasma kinetics involves elementary processes by which free electrons ultimately activate weakly reactive molecules, such as carbon dioxide or methane, thereby potentially starting prebiotic reaction chains. These processes include electron–molecule reactions and energy exchanges between molecules. They are basic processes, for example, in the famous Miller-Urey experiment, and become relevant in any prebiotic scenario where the primordial atmosphere is significantly ionized by electrical activity, photoionization or meteor phenomena. The kinetics of plasma displays remarkable complexity due to the non-equilibrium features of the energy distributions involved.
  • 672
  • 18 Mar 2022
Topic Review
The Concept of “Quantum-Like”
The birth and spread of the prefix “quantum-” to disciplines other than physics, and the introduction of the term “quantum-like”, reflect the increasing dissatisfaction with the perceived limits and pitfalls of classic Western thought. Of course, the latter remains valuable; what is wrong is its dogmatic use and the claim of its exclusive capacity to comprehend the world. The development of quantum physics has been paralleled by the introduction of paraconsistent logics, such as fuzzy logic and dialetheism, a clear sign of the need for smoothing the inflexibility of Aristotelian logic. There is also a fil rouge (viz. an epistemological symmetry) linking the paradigm of quantum physics to ancient pre-Socratic and Eastern philosophies, suggesting the need for reappraising them in the process of reexamination of the classical thought. The increasing use of the term “quantum-like” calls for the defining and sharing of its meaning in order to properly adopt it and avoid possible misuse. 
  • 914
  • 14 Mar 2022
Topic Review
Plasmonic Photothermal Therapy
The laser application for hyperthermia makes it possible to obtain managed thermal damage of tumor tissue. However, the small spatial selectivity of tumor tissue heating remains a problem of laser hyperthermia. The development of innovative nanoparticle-based technologies to improve the selectivity of laser heating is intensively pursued, and various types of plasmon resonance nanoparticles are used for this purpose, as follows: nanospheres nanoshells, nanorods, nanocages. Plasmonic photothermal therapy is referred to by the acronym PPT.
  • 558
  • 11 Mar 2022
Topic Review
Raman Spectroscopy
Cancer still constitutes one of the main global health challenges. Novel approaches towards understanding the molecular composition of the disease can be employed as adjuvant tools to current oncological applications. Raman spectroscopy has been contemplated and pursued to serve as a noninvasive, real time, in vivo tool which may uncover the molecular basis of cancer and simultaneously offer high specificity, sensitivity, and multiplexing capacity, as well as high spatial and temporal resolution.
  • 868
  • 11 Mar 2022
  • Page
  • of
  • 131
ScholarVision Creations