Topic Review
Surface Plasmon Coupled Emission Technology
Novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). This Editorial Review by Dr. Seemesh Bhaskar, University of Illinois Urbana-Champaign, provides a spotlight on the latest developments in SPCE substrate engineering to the broad audience of photo-plasmonics, spectroscopy, micro- & nanotechnology, life sciences, thin films and point-of-care diagnostics.
  • 590
  • 13 Mar 2023
Topic Review
Optical Parametric Oscillators and Raman Lasers
Optical parametric oscillators (OPOs) and Raman lasers are two nonlinear-based laser technologies that extend the spectral range of conventional inversion lasers. Power and brightness scaling of lasers are significant for many applications in industry, medicine, and defense. Considerable advances have been made to enhance the power and brightness of inversion lasers.
  • 590
  • 30 Jan 2022
Biography
Gustav Heinrich Wiedemann
Gustav Heinrich Wiedemann (German pronunciation: [ˈhaɪ̯nʁɪç ˈɡʊsta(ː)f ˈviːdəman];[1][2]) FRS(For) HFRSE (2 October 1826 – 24 March 1899) was a German physicist and scientific author. Wiedemann was born in Berlin the son of a merchant who died two years later. Following the death of his mother in 1842 he lived with his grandparents.[3] After attending a private school as well
  • 589
  • 12 Dec 2022
Topic Review
Water-Based Liquid Scintillators
Monolithic optical detectors, either water–Cherenkov detectors or liquid scintillator detectors, are a well-established technique in neutrino physics. Using water-based liquid scintillators (WbLS) is an approach that exploits Cherenkov and scintillation signals simultaneously; i.e., water is loaded with 1% to 10% liquid scintillator. 
  • 588
  • 04 Jan 2023
Topic Review
Ursa Major Moving Group
The Ursa Major Moving Group, also known as Collinder 285 and the Ursa Major association, is the closest stellar moving group – a set of stars with common velocities in space and thought to have a common origin in space and time. In the case of the Ursa Major group, all the stars formed about 300 million years ago. Its core is located roughly 80 light years away and part of the Local Bubble. It is rich in bright stars including most of the stars of the Big Dipper.
  • 587
  • 14 Oct 2022
Biography
Richard Garwin
Richard Lawrence Garwin (born April 19, 1928) is an United States physicist, widely known to be the author of the first hydrogen bomb design.[1][2] Garwin received his bachelor's degree from the Case Institute of Technology in 1947, and two years later his Ph.D. from the University of Chicago under the supervision of Enrico Fermi at the age of 21. Another of Fermi's students, Marvin L. Goldbe
  • 585
  • 25 Nov 2022
Topic Review
Baltimore–Washington Superconducting Maglev Project
The Baltimore–Washington Superconducting Maglev Project (SCMAGLEV) is a proposed project connecting the United States cities of Baltimore, Maryland, and Washington, D.C., with a 40 mi (64 km) maglev train system between their respective central business districts. It is the first segment of the planned Washington-New York Northeast Maglev project. The maglev proposal is not related to the Baltimore–Washington hyperloop proposed by the Boring Company.
  • 584
  • 18 Oct 2022
Topic Review
On Ghost Imaging Studies for Information Optical Imaging
To understand, study, and optimize optical imaging systems from the information-theoretic viewpoint has been an important research subfield. However, the "direct point-to-point" image information acquisition mode of traditional optical imaging is lacking in "Coding-decoding" operation on the image information, and limits the development of further imaging capabilities. On the other hand, ghost imaging (GI) systems, combined with modern light-field modulation and digital photoelectric detection technologies, behave more in line with the modulation–demodulation information transmission mode compared to traditional optical imaging. This puts forward imperative demands and challenges for understanding and optimizing ghost imaging systems from the viewpoint of information theory, as well as bringing more development opportunities for the research field of information optical imaging. Here, several specific GI systems and studies with various extended imaging capabilities will be briefly reviewed. 
  • 584
  • 14 Nov 2022
Topic Review
Mesoscale Dielectric Particles: Unusual Optical Effects
Mesoscale dielectric particles are mesostructures comprising both wavelength-scaled (i.e. dimensions comparable to wavelength) particles and particle chains or arrays. These particles are made of low loss dielectric materials having relatively low refractive index, namely the refractive index less than two. The main unusual optical effects in such structures are discussed below.
  • 582
  • 01 Jan 2022
Topic Review
Double-Blind FROG
Double-Blind FROG is a method for simultaneously measuring two unknown ultrashort laser pulses. Well established ultrafast measurement techniques like Frequency-Resolved Optical Gating (FROG) and its simplified version GRENOUILLE can only measure one unknown ultrashort laser pulse at a time. Another version of FROG, called cross-correlation FROG (XFROG), also measures only one pulse, but it involves two pulses: a known reference pulse and the unknown pulse to be measured. In modern optics experiments, ultrashort laser pulses have been used in a great variety of engineering application and scientific research, for example, biomedical engineering, material science, nonlinear spectroscopy, ultrafast chemistry, etc. Often, these experiments involve using two potentially different input laser pulses, for example, Raman spectroscopy, two-color pump-probe experiments, and non-degenerate four-wave mixing. In many situations, an output pulse is generated by a nonlinear optical process, such as harmonic generation, continuum generation, or optical parametric oscillation. In all such cases, measuring more than one pulse simultaneously is required to completely characterize the experiment and understand its results in order to eventually understand the underlying science of the process under study. Thus a measurement device capable of measuring two pulses simultaneously is highly desired.
  • 582
  • 20 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations