Topic Review
Calculation of the transition temperature of superconducting elements
Using the Roeser-Huber formalism, we establish a non-trivial relation between the crystal structure and the transition temperature, Tc, to the superconducting state. By means of this relation, we can calculate Tc for practically all superconducting elements quite accurately within a small error margin. It is shown that this works well also for polymorphic elements and elements under pressure. Furthermore, the Roeser-Huber formalism implies that all calculated data fall on a common line with the slope m1 = h2/(2πkB) = 5.061 × 10−45 m2 kg K, when plotting log(Σ((2x)-2n1-1ML-1))-1 versus 1/Tc, which can be employed as a test when predicting Tc of unknown superconductors.
  • 997
  • 21 Jun 2023
Topic Review
The Structural and Optical Properties of Carotenoid Compounds
Carotenoid compounds are ubiquitous in nature, providing the characteristic colouring of many algae, bacteria, fruits and vegetables. They are a critical component of the human diet and play a key role in human nutrition, health and disease. 
  • 997
  • 09 Jan 2023
Topic Review
Lower Limb Joint Kinematics
The use of inertial measurement units (IMUs) has gained popularity for the estimation of lower limb kinematics. However, implementations in clinical practice are still lacking. This review shows that methods for lower limb joint kinematics are inherently application dependent. Sensor restrictions are generally compensated with biomechanically inspired assumptions and prior information. Awareness of the possible adaptations in the IMU-based kinematic estimates by incorporating such prior information and assumptions is necessary, before drawing clinical decisions. Future research should focus on alternative validation methods, subject-specific IMU-based biomechanical joint models and disturbed movement patterns in real-world settings.
  • 995
  • 01 Nov 2020
Topic Review
Gent (Hyperelastic Model)
The Gent hyperelastic material model is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value [math]\displaystyle{ I_m }[/math]. The strain energy density function for the Gent model is where [math]\displaystyle{ \mu }[/math] is the shear modulus and [math]\displaystyle{ J_m = I_m -3 }[/math]. In the limit where [math]\displaystyle{ I_m \rightarrow \infty }[/math], the Gent model reduces to the Neo-Hookean solid model. This can be seen by expressing the Gent model in the form A Taylor series expansion of [math]\displaystyle{ \ln\left[1 - (I_1-3)x\right] }[/math] around [math]\displaystyle{ x = 0 }[/math] and taking the limit as [math]\displaystyle{ x\rightarrow 0 }[/math] leads to which is the expression for the strain energy density of a Neo-Hookean solid. Several compressible versions of the Gent model have been designed. One such model has the form (the below strain energy function yields a non zero hydrostatic stress at no deformation, refer https://link.springer.com/article/10.1007/s10659-005-4408-x for compressible Gent models). where [math]\displaystyle{ J = \det(\boldsymbol{F}) }[/math], [math]\displaystyle{ \kappa }[/math] is the bulk modulus, and [math]\displaystyle{ \boldsymbol{F} }[/math] is the deformation gradient.
  • 986
  • 21 Nov 2022
Topic Review
Electro-Osmosis
Electroosmotic flow (or electro-osmotic flow, often abbreviated EOF; synonymous with electroosmosis or electroendosmosis) is the motion of liquid induced by an applied potential across a porous material, capillary tube, membrane, microchannel, or any other fluid conduit. Because electroosmotic velocities are independent of conduit size, as long as the electrical double layer is much smaller than the characteristic length scale of the channel, electroosmotic flow will have little effect. Electroosmotic flow is most significant when in small channels. Electroosmotic flow is an essential component in chemical separation techniques, notably capillary electrophoresis. Electroosmotic flow can occur in natural unfiltered water, as well as buffered solutions.
  • 986
  • 29 Nov 2022
Topic Review
Advanced Technology Large-Aperture Space Telescope
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is an 8– to 16.8–meter UV-optical-NIR space telescope proposed by the Space Telescope Science Institute (STScI), the science operations center for the Hubble Space Telescope (HST). If launched, ATLAST would be a replacement and successor for the HST, with the ability to obtain spectroscopic and imaging observations of astronomical objects in the ultraviolet, optical, and infrared wavelengths, but with substantially better resolution than either HST or the planned James Webb Space Telescope (JWST). Like JWST, ATLAST would be launched to the Sun-Earth L2 Lagrange point. ATLAST is envisioned as a flagship mission of the 2025–2035 period, designed to determine whether there is life elsewhere in the galaxy. It would attempt to accomplish this by searching for "biosignatures" (such as molecular oxygen, ozone, water, and methane) in the spectra of terrestrial exoplanets. The backronym that the project currently uses, 'ATLAST', is in fact a pun. It refers to the time taken to decide on a true, visible-light, successor for the Hubble Space Telescope. However, it is expected that, as the project progresses, a new name would be chosen for the mission.
  • 988
  • 25 Oct 2022
Topic Review
Photocathode
A photocathode is a surface engineered to convert light (photons) into electrons using the photoelectric effect. Photocathodes are important in accelerator physics where they are utilised in a photoinjector to generate high brightness electron beams. Electron beams generated with photocathodes are commonly used for free electron lasers and for ultrafast electron diffraction. Photocathodes are also commonly used as the negatively charged electrode in a light detection device such as a photomultiplier or phototube.
  • 984
  • 24 Nov 2022
Topic Review
Capacitive Field-Effect Bio-Chemical Sensors
       Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.
  • 978
  • 19 Apr 2022
Topic Review
Photometry
Photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects. The methods used to perform photometry depend on the wavelength region under study. At its most basic, photometry is conducted by gathering light and passing it through specialized photometric optical bandpass filters, and then capturing and recording the light energy with a photosensitive instrument. Standard sets of passbands (called a photometric system) are defined to allow accurate comparison of observations. A more advanced technique is spectrophotometry that is measured with a spectrophotometer and observes both the amount of radiation and its detailed spectral distribution. Photometry is also used in the observation of variable stars, by various techniques such as, differential photometry that simultaneously measures the brightness of a target object and nearby stars in the starfield or relative photometry by comparing the brightness of the target object to stars with known fixed magnitudes. Using multiple bandpass filters with relative photometry is termed absolute photometry. A plot of magnitude against time produces a light curve, yielding considerable information about the physical process causing the brightness changes. Precision photoelectric photometers can measure starlight around 0.001 magnitude. The technique of surface photometry can also be used with extended objects like planets, comets, nebulae or galaxies that measures the apparent magnitude in terms of magnitudes per square arcsecond. Knowing the area of the object and the average intensity of light across the astronomical object determines the surface brightness in terms of magnitudes per square arcsecond, while integrating the total light of the extended object can then calculate brightness in terms of its total magnitude, energy output or luminosity per unit surface area.
  • 976
  • 11 Nov 2022
Topic Review
Valence-shell Electron-pair Repulsion Model
There are the following main assumptions of the Valence-shell Electron-pair Repulsion (VSEPR) model. - The arrangement of covalent bonds of the atom centre analyzed depends on the number of electron pairs in its valence shell: bonds and nonbonding pairs as lone electron pairs. - The arrangement of valence electron pairs around the centre considered is to maximize their distances apart. - The non-valence electrons - inner electrons with nucleus (i.e. the core) possess the spherical symmetry (or at least it is in force for the main groups elements). It is worth to note that the intra- and intermolecular interactions influence on electronic and molecular structures in accordance with this VSEPR model.
  • 972
  • 06 Sep 2021
  • Page
  • of
  • 130
Video Production Service