You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic. For video creation, please contact our Academic Video Service.
Version Summary Created by Modification Content Size Created at Operation
1 handwiki -- 1200 2022-11-21 01:32:23 |
2 format corrected. Meta information modification 1200 2022-11-21 15:46:05 |

Video Upload Options

We provide professional Academic Video Service to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Yes No
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
HandWiki. Gent (Hyperelastic Model). Encyclopedia. Available online: https://encyclopedia.pub/entry/35595 (accessed on 17 July 2025).
HandWiki. Gent (Hyperelastic Model). Encyclopedia. Available at: https://encyclopedia.pub/entry/35595. Accessed July 17, 2025.
HandWiki. "Gent (Hyperelastic Model)" Encyclopedia, https://encyclopedia.pub/entry/35595 (accessed July 17, 2025).
HandWiki. (2022, November 21). Gent (Hyperelastic Model). In Encyclopedia. https://encyclopedia.pub/entry/35595
HandWiki. "Gent (Hyperelastic Model)." Encyclopedia. Web. 21 November, 2022.
Gent (Hyperelastic Model)
Edit

The Gent hyperelastic material model is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value [math]\displaystyle{ I_m }[/math]. The strain energy density function for the Gent model is where [math]\displaystyle{ \mu }[/math] is the shear modulus and [math]\displaystyle{ J_m = I_m -3 }[/math]. In the limit where [math]\displaystyle{ I_m \rightarrow \infty }[/math], the Gent model reduces to the Neo-Hookean solid model. This can be seen by expressing the Gent model in the form A Taylor series expansion of [math]\displaystyle{ \ln\left[1 - (I_1-3)x\right] }[/math] around [math]\displaystyle{ x = 0 }[/math] and taking the limit as [math]\displaystyle{ x\rightarrow 0 }[/math] leads to which is the expression for the strain energy density of a Neo-Hookean solid. Several compressible versions of the Gent model have been designed. One such model has the form (the below strain energy function yields a non zero hydrostatic stress at no deformation, refer https://link.springer.com/article/10.1007/s10659-005-4408-x for compressible Gent models). where [math]\displaystyle{ J = \det(\boldsymbol{F}) }[/math], [math]\displaystyle{ \kappa }[/math] is the bulk modulus, and [math]\displaystyle{ \boldsymbol{F} }[/math] is the deformation gradient.

phenomenological model rubber elasticity hydrostatic stress

1. Consistency Condition

We may alternatively express the Gent model in the form

[math]\displaystyle{ W = C_0 \ln\left(1 - \cfrac{I_1-3}{J_m}\right) }[/math]

For the model to be consistent with linear elasticity, the following condition has to be satisfied:

[math]\displaystyle{ 2\cfrac{\partial W}{\partial I_1}(3) = \mu }[/math]

where [math]\displaystyle{ \mu }[/math] is the shear modulus of the material. Now, at [math]\displaystyle{ I_1 = 3 (\lambda_i = \lambda_j = 1) }[/math],

[math]\displaystyle{ \cfrac{\partial W}{\partial I_1} = -\cfrac{C_0}{J_m} }[/math]

Therefore, the consistency condition for the Gent model is

[math]\displaystyle{ -\cfrac{2C_0}{J_m} = \mu\, \qquad \implies \qquad C_0 = -\cfrac{\mu J_m}{2} }[/math]

The Gent model assumes that [math]\displaystyle{ J_m \gg 1 }[/math]

2. Stress-Deformation Relations

The Cauchy stress for the incompressible Gent model is given by

[math]\displaystyle{ \boldsymbol{\sigma} = -p~\boldsymbol{\mathit{I}} + 2~\cfrac{\partial W}{\partial I_1}~\boldsymbol{B} = -p~\boldsymbol{\mathit{I}} + \cfrac{\mu J_m}{J_m - I_1 + 3}~\boldsymbol{B} }[/math]

2.1. Uniaxial Extension

Stress-strain curves under uniaxial extension for Gent model compared with various hyperelastic material models. https://handwiki.org/wiki/index.php?curid=2087400

For uniaxial extension in the [math]\displaystyle{ \mathbf{n}_1 }[/math]-direction, the principal stretches are [math]\displaystyle{ \lambda_1 = \lambda,~ \lambda_2=\lambda_3 }[/math]. From incompressibility [math]\displaystyle{ \lambda_1~\lambda_2~\lambda_3=1 }[/math]. Hence [math]\displaystyle{ \lambda_2^2=\lambda_3^2=1/\lambda }[/math]. Therefore,

[math]\displaystyle{ I_1 = \lambda_1^2+\lambda_2^2+\lambda_3^2 = \lambda^2 + \cfrac{2}{{\lambda}} ~. }[/math]

The left Cauchy-Green deformation tensor can then be expressed as

[math]\displaystyle{ \boldsymbol{B} = \lambda^2~\mathbf{n}_1\otimes\mathbf{n}_1 + \cfrac{1}{\lambda}~(\mathbf{n}_2\otimes\mathbf{n}_2+\mathbf{n}_3\otimes\mathbf{n}_3) ~. }[/math]

If the directions of the principal stretches are oriented with the coordinate basis vectors, we have

[math]\displaystyle{ \sigma_{11} = -p + \cfrac{\lambda^2\mu J_m}{J_m - I_1 + 3} ~;~~ \sigma_{22} = -p + \cfrac{\mu J_m}{\lambda(J_m - I_1 + 3)} = \sigma_{33} ~. }[/math]

If [math]\displaystyle{ \sigma_{22} = \sigma_{33} = 0 }[/math], we have

[math]\displaystyle{ p = \cfrac{\mu J_m}{\lambda(J_m - I_1 + 3)}~. }[/math]

Therefore,

[math]\displaystyle{ \sigma_{11} = \left(\lambda^2 - \cfrac{1}{\lambda}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right)~. }[/math]

The engineering strain is [math]\displaystyle{ \lambda-1\, }[/math]. The engineering stress is

[math]\displaystyle{ T_{11} = \sigma_{11}/\lambda = \left(\lambda - \cfrac{1}{\lambda^2}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right)~. }[/math]

2.2. Equibiaxial Extension

For equibiaxial extension in the [math]\displaystyle{ \mathbf{n}_1 }[/math] and [math]\displaystyle{ \mathbf{n}_2 }[/math] directions, the principal stretches are [math]\displaystyle{ \lambda_1 = \lambda_2 = \lambda\, }[/math]. From incompressibility [math]\displaystyle{ \lambda_1~\lambda_2~\lambda_3=1 }[/math]. Hence [math]\displaystyle{ \lambda_3=1/\lambda^2\, }[/math]. Therefore,

[math]\displaystyle{ I_1 = \lambda_1^2+\lambda_2^2+\lambda_3^2 = 2~\lambda^2 + \cfrac{1}{\lambda^4} ~. }[/math]

The left Cauchy-Green deformation tensor can then be expressed as

[math]\displaystyle{ \boldsymbol{B} = \lambda^2~\mathbf{n}_1\otimes\mathbf{n}_1 + \lambda^2~\mathbf{n}_2\otimes\mathbf{n}_2+ \cfrac{1}{\lambda^4}~\mathbf{n}_3\otimes\mathbf{n}_3 ~. }[/math]

If the directions of the principal stretches are oriented with the coordinate basis vectors, we have

[math]\displaystyle{ \sigma_{11} = \left(\lambda^2 - \cfrac{1}{\lambda^4}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right) = \sigma_{22} ~. }[/math]

The engineering strain is [math]\displaystyle{ \lambda-1\, }[/math]. The engineering stress is

[math]\displaystyle{ T_{11} = \cfrac{\sigma_{11}}{\lambda} = \left(\lambda - \cfrac{1}{\lambda^5}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right) = T_{22}~. }[/math]

2.3. Planar Extension

Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the [math]\displaystyle{ \mathbf{n}_1 }[/math] directions with the [math]\displaystyle{ \mathbf{n}_3 }[/math] direction constrained, the principal stretches are [math]\displaystyle{ \lambda_1=\lambda, ~\lambda_3=1 }[/math]. From incompressibility [math]\displaystyle{ \lambda_1~\lambda_2~\lambda_3=1 }[/math]. Hence [math]\displaystyle{ \lambda_2=1/\lambda\, }[/math]. Therefore,

[math]\displaystyle{ I_1 = \lambda_1^2+\lambda_2^2+\lambda_3^2 = \lambda^2 + \cfrac{1}{\lambda^2} + 1 ~. }[/math]

The left Cauchy-Green deformation tensor can then be expressed as

[math]\displaystyle{ \boldsymbol{B} = \lambda^2~\mathbf{n}_1\otimes\mathbf{n}_1 + \cfrac{1}{\lambda^2}~\mathbf{n}_2\otimes\mathbf{n}_2+ \mathbf{n}_3\otimes\mathbf{n}_3 ~. }[/math]

If the directions of the principal stretches are oriented with the coordinate basis vectors, we have

[math]\displaystyle{ \sigma_{11} = \left(\lambda^2 - \cfrac{1}{\lambda^2}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right) ~;~~ \sigma_{22} = 0 ~;~~ \sigma_{33} = \left(1 - \cfrac{1}{\lambda^2}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right)~. }[/math]

The engineering strain is [math]\displaystyle{ \lambda-1\, }[/math]. The engineering stress is

[math]\displaystyle{ T_{11} = \cfrac{\sigma_{11}}{\lambda} = \left(\lambda - \cfrac{1}{\lambda^3}\right)\left(\cfrac{\mu J_m}{J_m - I_1 + 3}\right)~. }[/math]

2.4. Simple Shear

The deformation gradient for a simple shear deformation has the form[1]

[math]\displaystyle{ \boldsymbol{F} = \boldsymbol{1} + \gamma~\mathbf{e}_1\otimes\mathbf{e}_2 }[/math]

where [math]\displaystyle{ \mathbf{e}_1,\mathbf{e}_2 }[/math] are reference orthonormal basis vectors in the plane of deformation and the shear deformation is given by

[math]\displaystyle{ \gamma = \lambda - \cfrac{1}{\lambda} ~;~~ \lambda_1 = \lambda ~;~~ \lambda_2 = \cfrac{1}{\lambda} ~;~~ \lambda_3 = 1 }[/math]

In matrix form, the deformation gradient and the left Cauchy-Green deformation tensor may then be expressed as

[math]\displaystyle{ \boldsymbol{F} = \begin{bmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ~;~~ \boldsymbol{B} = \boldsymbol{F}\cdot\boldsymbol{F}^T = \begin{bmatrix} 1+\gamma^2 & \gamma & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} }[/math]

Therefore,

[math]\displaystyle{ I_1 = \mathrm{tr}(\boldsymbol{B}) = 3 + \gamma^2 }[/math]

and the Cauchy stress is given by

[math]\displaystyle{ \boldsymbol{\sigma} = -p~\boldsymbol{\mathit{1}} + \cfrac{\mu J_m}{J_m - \gamma^2}~\boldsymbol{B} }[/math]

In matrix form,

[math]\displaystyle{ \boldsymbol{\sigma} = \begin{bmatrix} -p +\cfrac{\mu J_m (1+\gamma^2)}{J_m - \gamma^2} & \cfrac{\mu J_m \gamma}{J_m - \gamma^2} & 0 \\ \cfrac{\mu J_m \gamma}{J_m - \gamma^2} & -p + \cfrac{\mu J_m}{J_m - \gamma^2} & 0 \\ 0 & 0 & -p + \cfrac{\mu J_m}{J_m - \gamma^2} \end{bmatrix} }[/math]

References

  1. Ogden, R. W., 1984, Non-linear elastic deformations, Dover.
More
Upload a video for this entry
Information
Subjects: Others
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.7K
Entry Collection: HandWiki
Revisions: 2 times (View History)
Update Date: 21 Nov 2022
1000/1000
Hot Most Recent
Academic Video Service