Biography
Richard Dronskowski
Richard Dronskowski (born 11 November 1961, in Brilon) is a German chemist and physicist. He is a full professor at the RWTH Aachen University. Dronskowski studied chemistry and physics at the University of Münster from 1981 to 1986.[1] He completed his chemistry diploma with Bernt Krebs and Arndt Simon in 1987.[1] He finished his physics diploma with Ole Krogh Andersen and Johannes Pollmann
  • 387
  • 12 Dec 2022
Topic Review
RFID Sensors for IoT
Abstract: Radio-frequency identification (RFID) sensors are one of the fundamental components of the Internet of Things.  Within this framework, chipless RFIDs are a breakthrough technology because, removing the cost associated with the chip, are at the same time printable, passive, low-power and suitable for harsh environments. For this reason, there is a clear motivation and interest to extend the chipless sensing functionality to physical, chemical, structural and environmental parameters. Temperature and humidity sensors, as well as localization, proximity, and structural health prototypes, have already been produced, and many other sensing applications are on the way. In this review, architectural approaches and requirements related to the materials employed for chipless RFID sensing are summarized. The state-of-the-art of many categories of sensors and their applications is reported and an analysis of the current limitations and possible solution strategies are given, together with an overview of expected future developments.
  • 1.6K
  • 29 Oct 2020
Topic Review
Resonance
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillating force is applied at a resonant frequency of a dynamic system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies. Frequencies at which the response amplitude is a relative maximum are also known as resonant frequencies or resonance frequencies of the system. Small periodic forces that are near a resonant frequency of the system have the ability to produce large amplitude oscillations in the system due to the storage of vibrational energy. Resonance phenomena occur with all types of vibrations or waves: there is mechanical resonance, Orbital resonance, acoustic resonance, electromagnetic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR) and resonance of quantum wave functions. Resonant systems can be used to generate vibrations of a specific frequency (e.g., musical instruments), or pick out specific frequencies from a complex vibration containing many frequencies (e.g., filters). The term resonance (from Latin resonantia, 'echo', from resonare, 'resound') originated from the field of acoustics, particularly the sympathetic resonance observed in musical instruments, e.g., when one string starts to vibrate and produce sound after a different one is struck.
  • 1.0K
  • 27 Oct 2022
Topic Review
RESOLFT
RESOLFT, an acronym for REversible Saturable OpticaL Fluorescence Transitions, denotes a group of optical fluorescence microscopy techniques with very high resolution. Using standard far field visible light optics a resolution far below the diffraction limit down to molecular scales can be obtained. With conventional microscopy techniques, it is not possible to distinguish features that are located at distances less than about half the wavelength used (i.e. about 200 nm for visible light). This diffraction limit is based on the wave nature of light. In conventional microscopes the limit is determined by the used wavelength and the numerical aperture of the optical system. The RESOLFT concept surmounts this limit by temporarily switching the molecules to a state in which they cannot send a (fluorescence-) signal upon illumination. This concept is different from for example electron microscopy where instead the used wavelength is much smaller.
  • 466
  • 25 Nov 2022
Topic Review
Repair of HSGc-C5 Carcinoma Cell Using Geant4-DNA
To evaluate the repair performance of HSGc-C5 carcinoma cell against radiation-induced DNA damage, a Geant4-DNA application for radiobiological research was extended by using newly measured experimental data acquired.
  • 389
  • 17 Jan 2022
Topic Review
Remediation Characteristics of Heavy Metals
Most food waste is incinerated and reclaimed in Korea. Due to the development of industry, soil and groundwater pollution are serious. The purpose of this study was to study recycled materials and eco-friendly remediation methods to prevent secondary pollution after remediation. In this study, recycled food waste ash was filled in a permeable reactive barrier (PRB) and used as a heavy metal adsorption material. In situ remediation electrokinetic techniques (EK) and acetic acid were used. Electrokinetic remediation is a technology that can remove various polluted soils and pollutants, and is an economical and highly useful remediation technique. Thereafter, the current density increased constantly over time, and it was confirmed that it increased after electrode exchange and then decreased. Based on this result, the acetic acid was constantly injected and it was reconfirmed through the water content after the end of the experiment. In the case of both heavy metals, the removal efficiency was good after 10 days of operation and 8 days after electrode exchange, but, in the case of lead, it was confirmed that experiments are needed by increasing the operation date before electrode exchange. It was confirmed that the copper removal rate was about 74% to 87%, and the lead removal rate was about 11% to 43%. After the end of the experiment, a low pH was confirmed at x/L = 0.9, and it was also confirmed that there was no precipitation of heavy metals and there was a smooth movement by the enhancer and electrolysis after electrode exchange. 
  • 540
  • 20 Aug 2021
Topic Review
Relaxation
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium. Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time t is an exponential law exp(-t/τ) (exponential decay).
  • 712
  • 25 Oct 2022
Topic Review
Relative Hour (Jewish Law)
Relative hour (Hebrew singular: shaʿah zǝmanit / שעה זמנית; plural: shaʿot - zǝmaniyot / שעות זמניות), sometimes called halachic hour, seasonal hour and variable hour, is a term used in rabbinic Jewish law that assigns 12 hours to each day and 12 hours to each night, all throughout the year. A relative hour has no fixed radical, but changes with the length of each day - depending on summer (when the days are long and the nights are short), and on winter (when the days are short and the nights are long). Even so, in all seasons a day is always divided into 12 hours, and a night is always divided into 12 hours, which inevitably makes for a longer hour or a shorter hour. All of the hours mentioned by the Sages in either the Mishnah or Talmud, or in other rabbinic writings, refer strictly to relative hours. Another feature of this ancient practice is that, unlike the standard modern 12-hour clock that assigns 12 o'clock pm for noon time, in the ancient Jewish tradition noon time was always the sixth hour of the day, whereas the first hour began with the break of dawn, by most exponents of Jewish law, and with sunrise by the Vilna Gaon and Rabbi Hai Gaon. 12:o'clock am (midnight) was also the sixth hour of the night, whereas the first hour of the night began when the first three stars appeared in the night sky.
  • 10.9K
  • 19 Oct 2022
Biography
Reimar Lüst
Reimar Lüst (German: [ˈʁaɪmaʁ ˈlyːst]; 25 March 1923 – 31 March 2020)[1] was a German astrophysicist. He worked in European space science from its beginning, as the scientific director of the European Space Research Organisation (ESRO) from 1962 and as Director General of the European Space Agency (ESA) from 1984 until 1990. Lüst taught internationally and influenced German politics a
  • 454
  • 29 Dec 2022
Topic Review
Regularization
In physics, especially quantum field theory, regularization is a method of modifying observables which have singularities in order to make them finite by the introduction of a suitable parameter called the regulator. The regulator, also known as a "cutoff", models our lack of knowledge about physics at unobserved scales (e.g. scales of small size or large energy levels). It compensates for (and requires) the possibility that "new physics" may be discovered at those scales which the present theory is unable to model, while enabling the current theory to give accurate predictions as an "effective theory" within its intended scale of use. It is distinct from renormalization, another technique to control infinities without assuming new physics, by adjusting for self-interaction feedback. Regularization was for many decades controversial even amongst its inventors, as it combines physical and epistemological claims into the same equations. However, it is now well understood and has proven to yield useful, accurate predictions.
  • 673
  • 28 Oct 2022
  • Page
  • of
  • 130
Video Production Service