Topic Review
Kikuchi Line
Kikuchi lines pair up to form bands in electron diffraction from single crystal specimens, there to serve as "roads in orientation-space" for microscopists not certain what they are looking at. In transmission electron microscopes, they are easily seen in diffraction from regions of the specimen thick enough for multiple scattering. Unlike diffraction spots, which blink on and off as one tilts the crystal, Kikuchi bands mark orientation space with well-defined intersections (called zones or poles) as well as paths connecting one intersection to the next. Experimental and theoretical maps of Kikuchi band geometry, as well as their direct-space analogs e.g. bend contours, electron channeling patterns, and fringe visibility maps are increasingly useful tools in electron microscopy of crystalline and nanocrystalline materials. Because each Kikuchi line is associated with Bragg diffraction from one side of a single set of lattice planes, these lines can be labeled with the same Miller or reciprocal-lattice indices that are used to identify individual diffraction spots. Kikuchi band intersections, or zones, on the other hand are indexed with direct-lattice indices i.e. indices which represent integer multiples of the lattice basis vectors a, b and c. Kikuchi lines are formed in diffraction patterns by diffusely scattered electrons, e.g. as a result of thermal atom vibrations. The main features of their geometry can be deduced from a simple elastic mechanism proposed in 1928 by Seishi Kikuchi, although the dynamical theory of diffuse inelastic scattering is needed to understand them quantitatively. In x-ray scattering these lines are referred to as Kossel lines (named after Walther Kossel).
  • 364
  • 18 Nov 2022
Topic Review
Kikuchi Lines
Kikuchi lines are patterns of electrons formed by scattering. They pair up to form bands in electron diffraction from single crystal specimens, there to serve as "roads in orientation-space" for microscopists uncertain of what they are looking at. In transmission electron microscopes, they are easily seen in diffraction from regions of the specimen thick enough for multiple scattering. Unlike diffraction spots, which blink on and off as one tilts the crystal, Kikuchi bands mark orientation space with well-defined intersections (called zones or poles) as well as paths connecting one intersection to the next. Experimental and theoretical maps of Kikuchi band geometry, as well as their direct-space analogs e.g. bend contours, electron channeling patterns, and fringe visibility maps are increasingly useful tools in electron microscopy of crystalline and nanocrystalline materials. Because each Kikuchi line is associated with Bragg diffraction from one side of a single set of lattice planes, these lines can be labeled with the same Miller or reciprocal-lattice indices that are used to identify individual diffraction spots. Kikuchi band intersections, or zones, on the other hand are indexed with direct-lattice indices i.e. indices which represent integer multiples of the lattice basis vectors a, b and c. Kikuchi lines are formed in diffraction patterns by diffusely scattered electrons, e.g. as a result of thermal atom vibrations. The main features of their geometry can be deduced from a simple elastic mechanism proposed in 1928 by Seishi Kikuchi, although the dynamical theory of diffuse inelastic scattering is needed to understand them quantitatively. In x-ray scattering, these lines are referred to as Kossel lines (named after Walther Kossel).
  • 1.8K
  • 09 Nov 2022
Topic Review
Kilowatt Hour
The kilowatt hour (symbol: kW⋅h, kW h, or kWh) is a unit of energy equal to 3.6 megajoules. If energy is transmitted or used at a constant rate (power) over a period of time, the total energy in kilowatt hours is equal to the power in kilowatts multiplied by the time in hours. The kilowatt hour is commonly used as a billing unit for energy delivered to consumers by electric utilities.
  • 4.3K
  • 14 Nov 2022
Topic Review
KinITC
The method kinITC for kinetic Isothermal Titration Calorimetry is an extension of the classical ITC technique in view of obtaining kinetic information in addition to thermodynamic information. It has been described in full in, and in a simplified and less general form in.
  • 396
  • 04 Nov 2022
Topic Review
Korean Taekwondo Athletes
This study aimed to present a standard and normal distribution of Taekwondo athletes’ physical characteristics and physical fitness profiles using a systematic review. A systematic search was conducted using four Korean databases (Research Information Sharing Service, National Digital Science Library, DBpia, and Korean Studies Information Service System). From 2010 to 2020, we reviewed 838 papers on Taekwondo athletes’ physical characteristics and physical fitness factors (e.g., body composition, muscle strength, muscular endurance, flexibility, cardiorespiratory fitness, power, agility, balance, speed, and reaction time).
  • 1.2K
  • 29 Sep 2021
Topic Review
Korteweg–de Vries Equation
In mathematics, the Korteweg–de Vries (KdV) equation is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non-linear partial differential equation whose solutions can be exactly and precisely specified. KdV can be solved by means of the inverse scattering transform. The mathematical theory behind the KdV equation is a topic of active research. The KdV equation was first introduced by Boussinesq (1877, footnote on page 360) and rediscovered by Diederik Korteweg and Gustav de Vries (1895).
  • 418
  • 13 Oct 2022
Topic Review
Kounotori Integrated Tether Experiment
Kounotori 6 (こうのとり6号機), also known as HTV-6, is the sixth flight of the H-II Transfer Vehicle, an uncrewed cargo spacecraft launched to resupply the International Space Station. It was launched at 13:26:47 UTC on 9 December 2016 aboard H-IIB launch vehicle from Tanegashima Space Center.
  • 484
  • 27 Oct 2022
Topic Review
KTHNY Theory
The KTHNY-theory describes melting of crystals in two dimensions (2D). The name is derived from the initials of the surnames of John Michael Kosterlitz, David J. Thouless, Bertrand Halperin, David R. Nelson, and A. Peter Young, who developed the theory in the 1970s. It is, beside the Ising model in 2D and the XY model in 2D, one of the few theories, which can be solved analytically and which predicts a phase transition at a temperature [math]\displaystyle{ T \gt 0 }[/math].
  • 432
  • 02 Nov 2022
Topic Review
Kya (Unit)
A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars; see below. For the Gregorian calendar, the average length of the calendar year (the mean year) across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a (for Latin annus) to represent a year of either 365 or 366 days. In English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time; it is defined as 365.25 days of exactly 86,400 seconds (SI base unit), totalling exactly 31,557,600 seconds in the Julian astronomical year. The word year is also used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. Similarly, year can mean the orbital period of any planet; for example, a Martian year and a Venusian year are examples of the time a planet takes to transit one complete orbit. The term can also be used in reference to any long period or cycle, such as the Great Year.
  • 2.5K
  • 14 Nov 2022
Topic Review
L-Photo-Leucine
L-Photo-Leucine is a synthetic derivative of the L-Leucine amino acid that is used as its natural analog and is characterized for having photo-reactivity, which makes it suitable for observing and characterizing protein-protein interactions (PPI). When a protein containing this amino acid (A) is lightened with ultraviolet light while interacting with another protein (B), the complex formed from these two proteins (AB) remains attached and can be isolated for its study. Photo Leucine, as well as another photo-reactive amino acid derived from Methionine, Photo-Methionine, were first synthesized in 2005 by Monika Suchanek, Anna Radzikoska and Christoph Thiele from the Max Planck Institute of Molecular Cell Biology and Genetics with the objective of identifying protein to protein interaction throughout a simple western blot test that would provide high specificity. The resemblance of the photo-reactive amino acids to the natural ones allows the former ones to avoid the extensive control mechanisms that take place during the protein synthesis within the cell.
  • 326
  • 24 Oct 2022
  • Page
  • of
  • 118
Video Production Service