Topic Review
AFM Investigation of Protein Crystals Morphology
Atomic force microscopy (AFM) enables the visualization of soft samples over a wide size range, from hundreds of micrometers up to the molecular level. The nonperturbative nature, the ability to scan in a liquid environment, and the lack of need for freezing, fixing, or staining make AFM a well-suited tool for studying fragile samples such as macromolecular crystals. The achievements of AFM underlined start from the study of crystal growth processes studying the surface morphology of protein crystals, passes through the in-depth analysis of the S-layer systems, and arrive at the introduction of the high-speed atomic force microscopy (HS-AFM) that allows the observation of molecular dynamics adsorption.
  • 203
  • 06 Sep 2023
Topic Review
Optical Fibre-Based Sensors
Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing.
  • 293
  • 06 Sep 2023
Topic Review
Exchange Bias in Nanostructures
Exchange bias (EB) is a unidirectional anisotropy occurring in exchange-coupled ferromagnetic/antiferromagnetic systems, such as thin films, core–shell particles, or nanostructures. In addition to a horizontal shift of the hysteresis loop, defining the exchange bias, asymmetric loops and even vertical shifts can often be found. 
  • 432
  • 30 Aug 2023
Topic Review
Ergontropic Dynamics
Ergontropic dynamics is a concept that links dynamics and thermodynamics based on the concept of energy, work, and entropy. It differs from standard treatments, in particular, in that it does not derive irreversible thermodynamics from reversible microscopic dynamics and the force term, dp/dt, is derived from these principles and not assumed ab initio. The concept offers an intelligible explanation of a number of physical problems by embedding the universal tendency of energy to a minimum and entropy to a maximum in a new framework. The result is a modification of Newton’s dynamic equation of motion that bases the principles of mechanics on the concepts of energy and entropy, rather than the usual definition of force, and integrates the description of translation and vortex motion into a consistent framework. By reframing the fundamental concepts of classical mechanics and electrodynamics through the perspectives of energy and entropy, ergontropic dynamics stands as a novel framework that transcends both of these fields. 
  • 484
  • 30 Aug 2023
Topic Review
Role of Gamma Ray Pulsars for MACE Telescope
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from pulsars is generally believed to be powered by the rotational energy of neutron stars. More than 3000 pulsars have been currently known from radio observations; however, only about 10% are observed in the high-energy gamma ray band. The Fermi-LAT observations in the energy range above 100 MeV have discovered more than 300 pulsars. However, the origin of high-energy non-thermal radiation from pulsars is not completely understood and remains an active area of research. Researchers report a summary of observational features of the gamma ray pulsars and briefly discuss observability for the MACE gamma ray telescope, which has just started its regular science operation at Hanle in India. Six gamma ray pulsars, other than the well-known Crab and Geminga, are identified as probable candidates for MACE observations.
  • 284
  • 24 Aug 2023
Topic Review
Silicon Photonics Technology
Silicon (Si) photonics is a groundbreaking technology that merges the fields of Si microelectronics and photonics to enable the manipulation and transmission of light on a Si chip. It leverages the exceptional properties of Si, such as its high refractive index and compatibility with existing electronic manufacturing processes, to create compact and highly efficient optical devices. Silicon photonics has been an area of active research and development. Researchers have been working on enhancing the integration density and intricacy of silicon photonic circuits. This involves the development of advanced fabrication techniques and novel designs to enable more functionalities on a single chip, leading to higher performance and more efficient systems. 
  • 259
  • 22 Aug 2023
Topic Review
Optical Tweezers with Metasurfaces
Optical tweezers (OTs) have made significant progress, realizing the non-contact optical manipulation of target objects through the interaction between light and matter. In addition to trapping particles with the intensity gradient of the beam, a series of complex optical elements are required to properly modulate the beams to expand the operation of optical manipulation. The development of metasurfaces alleviates this problem. Due to the merits of miniaturization, planarization, multi-function, and integration of metasurfaces, these kinds of novel devices have been applied in OT systems. 
  • 204
  • 17 Aug 2023
Topic Review
The Andromeda Galaxy
Star formation histories of galaxies are critically important for understanding the process of galaxy formation and the structure and contents of galaxies. Star formation can and has been studied in local galaxies for which the stellar populations are resolved and in more distant galaxies for which stars are unresolved, which are instead modeled as populations. Structural components of a galaxy can be resolved at much larger distances. The structural components include those long recognized, such as bulge, disk and halo. More recently recognized structures include separation of disks into thin and thick disk components and stellar streams, as well as recognition of significant numbers of dwarf companion galaxies. Stellar streams are the most recently recognized components of galaxies, mainly using observations of the Milky Way and the Andromeda Galaxy (M31).
  • 576
  • 14 Aug 2023
Topic Review
Neurofeedback and Neuromodulation
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain–computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques.
  • 337
  • 10 Aug 2023
Topic Review
Complex flow and heat transfer characteristics in microchannels
Continuously improving heat transfer efficiency is one of the important goals in the energy field. Compact heat exchangers characterized by microscale flow and heat transfer have successfully provided solutions for this purpose. However, as the characteristic scale of the channels decreases, the flow and heat transfer characteristics may differ from those at the conventional scale. When considering the influence of scale effects and changes in special fluid properties, the flow and heat transfer process becomes more complex. The conclusions of the relevant studies have not been unified, and there are even disagreements in some aspects. Therefore, further research is needed to obtain a sufficient understanding of flow structure and heat transfer mechanisms in microchannels. There are a lot of research about microscale flow and heat transfer, focusing on the flow and heat transfer mechanisms in microchannels, which is elaborated into the following two perspectives: one is the microscale single-phase flow and heat transfer that only considers the influence of scale effects, the other is the special heat transfer phenomena brought about by the coupling of microscale flow with special fluids (fluid with phase change (pseudophase change)). The microscale flow and heat transfer mechanisms under the influence of multiple factors, including scale effects (such as rarefaction, surface roughness, axial heat conduction, and compressibility) and special fluids, are investigated, which can meet the specific needs for the design of various microscale heat exchangers.
  • 352
  • 03 Aug 2023
  • Page
  • of
  • 118
Video Production Service