Topic Review
American Education
The landscape of education in the United States is in a state of flux, marked by ongoing debates about how best to reform the system to meet the needs of a diverse and changing society.
  • 15
  • 18 Sep 2024
Topic Review
Oscillatory Spinning Drop Interfacial Rheology
The oscillatory spinning drop method has been proven recently to be an accurate technique to measure dilational interfacial rheological properties. It is the only available equipment for measuring dilational moduli in low interfacial tension systems, as is the case in applications dealing with surfactant-oil-water three-phase behavior like enhanced oil recovery, crude oil dehydration, or extreme microemulsion solubilization. Different systems can be studied with this method with the lower density phase as the spinning drop, i.e, oil-in-water, microemulsion-in-water, oil-in-microemulsion, including systems with the presence of complex natural surfactants like asphaltene aggregates or particles. The technique allows studying the characteristics and properties of water/oil interfaces, particularly when the oil contains asphaltenes and when surfactants are present. We have found that using the oscillating spinning drop method to measure interfacial rheology properties can help make precise measurements in a reasonable amount of time. This is of significance when systems with long equilibration times, e.g., asphaltene or high molecular weight surfactant-containing systems are measured, or with systems formulated with a demulsifier which is generally associated with optimum formulation and a low interfacial tension.
  • 1.8K
  • 08 Sep 2024
Topic Review
Assembly Theory
Assembly theory is a framework for quantifying selection, evolution, and complexity. It, therefore, spans various scientific disciplines, including physics, chemistry, biology, and information theory. Assembly theory is rooted in the assembly of an object from a set of basic building units, forming an initial assembly pool and from subunits that entered the assembly pool in previous assembly steps. Hence, the object is defined not as a set of point particles but by the history of its assembly, where the assembly index is the smallest number of steps required to assemble the object.
  • 63
  • 29 Aug 2024
Topic Review
Excess Conductivity Analysis of an YBCO Foam Strut
Magneto-resistance data R(T, B) obtained at temperatures in the range 4.2 K ≤ T ≤ 150 K (applied magnetic fields ranging from 0 to 7 T) were analyzed in the framework of the fluctuation-induced conductivity (FIC) approach using the models of Aslamazov-Larkin (AL) and Lawrence-Doniach (LD). From the R(T, B) curves we determine in a first instance the residual resistivity ρ0, the normal-state resistivity ρn(T), the mean-field transition temperature TcMF (here due to the appearance of two peaks in dρ/dT called Tc1mid and Tc2mid), the temperature T* (the deviation from the linear resistance behavior), and the characteristic temperatures Tconset and Tcoffset. The data of 10% ρn yield information on the irreversibility line (Hirr(T)), and the data of 90% ρn give information on the upper critical field, Hc2(T). This material then serves to obtain the fluctuation induced conductivity (FIC) or excess conductivity. The resulting FIC curves for each applied magnetic field reveal the presence of five distinct fluctuation regimes above the temperature Tcmid, namely, the short-wave (SWF), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuation domains. The analysis of the FIC data enable the coherence length in the direction of the c-axis at zero-temperature (ξc(0)), the lower and upper critical magnetic fields (Bc1, Bc2), the critical current density at T = 0 K (Jc(0)) and several other parameters describing the the material’s superconducting properties to be determined. A proper knowledge of the microstructure of the YBCO foam sample contributes to the understanding of the present data. It is revealed that the minuscule Y-211 particles found along the YBCO grain boundaries alter the excess conductivity and the fluctuation behavior as compared to conventional YBCO samples, leading to a quite high value for Jc(0) for a sample with a non-optimized pinning landscape.
  • 89
  • 28 Aug 2024
Topic Review
The Resonance Structure Units
The construction of structural units is crucial in developing acoustic metasurfaces. These units must fulfill the necessary requirements, including the 2π phase change and being as small as possible. The resonant structure unit that controls large wavelengths with a small size precisely meets this requirement.
  • 80
  • 27 Aug 2024
Topic Review
Area Codes
Today, the North American Numbering Plan continues to create new area codes as demand increases for local lines in cities and regions nationwide. When a new area code is added, customers
  • 65
  • 26 Aug 2024
Topic Review
Emergent Dimensionality
The principle of emergent dimensionality states that 3-dimensional reality does not exist observer-independently but emerges, for a living agent, from an omnidimensional graph of nature that contains all unobservable extra dimensions.
  • 301
  • 16 Aug 2024
Topic Review Peer Reviewed
High-Power Lasers
High-power lasers play an important role in modern science, industry, and medicine. A significant milestone was reached on 5 December 2022, when Inertial Confinement Nuclear Fusion (ICF) achieved scientific breakeven, releasing more energy than the input laser energy. Additionally, Extreme Ultraviolet Lithography (EUVL) has enabled the development of microchips with 3 nm process nodes, marking a leap in semiconductor technology. These examples, together with the recent achievement of 10 PW (1015 W) laser output, herald remarkable advancements in technology and science. Laser systems are broadly classified based on their operating regimes into two main categories: Continuous Wave (CW) operation, where the laser is continuously pumped and emits a steady beam of light, and the pulsed regime, in which the laser produces single or multiple pulses at various repetition rates. This review will primarily focus on pulsed laser systems, exploring their various types and recent technological advancements.
  • 632
  • 09 Aug 2024
Topic Review
Dark Matter
Dark matter is a term used to describe a form of matter that does not emit, absorb, or reflect light, making it invisible to current astronomical instruments. Despite its elusive nature, dark matter is thought to make up approximately 27% of the universe's mass-energy content, significantly more than the ordinary matter that constitutes stars, planets, and all known structures in the observable universe. The existence of dark matter is inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe.
  • 133
  • 25 Jul 2024
Topic Review
Cosmology
Cosmology (from grc κόσμος (kósmos) 'world', and -λογία (-logía) 'study of') is a branch of physics and metaphysics dealing with the nature of the universe. The term cosmology was first used in English in 1656 in Thomas Blount's Glossographia, and in 1731 taken up in Latin by German philosopher Christian Wolff, in Cosmologia Generalis. Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy it is concerned with the study of the chronology of the universe. Physical cosmology is the study of the observable universe's origin, its large-scale structures and dynamics, and the ultimate fate of the universe, including the laws of science that govern these areas. It is investigated by scientists, such as astronomers and physicists, as well as philosophers, such as metaphysicians, philosophers of physics, and philosophers of space and time. Because of this shared scope with philosophy, theories in physical cosmology may include both scientific and non-scientific propositions, and may depend upon assumptions that cannot be tested. Physical cosmology is a sub-branch of astronomy that is concerned with the Universe as a whole. Modern physical cosmology is dominated by the Big Bang theory, which attempts to bring together observational astronomy and particle physics; more specifically, a standard parameterization of the Big Bang with dark matter and dark energy, known as the Lambda-CDM model. Theoretical astrophysicist David N. Spergel has described cosmology as a "historical science" because "when we look out in space, we look back in time" due to the finite nature of the speed of light.
  • 1.7K
  • 01 Jul 2024
  • Page
  • of
  • 119
ScholarVision Creations