Topic Review
Nanophotocatalysts
Biomedical waste management is getting significant consideration among treatment technologies, since insufficient management can cause danger to medicinal service specialists, patients, and their environmental conditions. The improvement of waste administration protocols, plans, and policies are surveyed, despite setting up training programs on legitimate waste administration for all healthcare service staff. Most biomedical waste substances do not degrade in the environment, and may also not be thoroughly removed through treatment processes. Therefore, the long-lasting persistence of biomedical waste can effectively have adverse impact on wildlife and human beings, as well. Hence, photocatalysis is gaining increasing attention for eradication of pollutants and for improving the safety and clearness of the environment due to its great potential as a green and eco-friendly process. In this regard, nanostructured photocatalysts, in contrast to their regular counterparts, exhibit significant attributes such as non-toxicity, low cost and higher absorption efficiency in a wider range of the solar spectrum, making them the best candidate to employ for photodegradation. Due to these unique properties of nanophotocatalysts for biomedical waste management, we aim to critically evaluate various aspects of these materials in the present review and highlight their importance in healthcare service settings.
  • 1.9K
  • 18 Aug 2020
Topic Review
Nanoceria
Several biocompatible materials have been applied for managing soft tissue lesions; cerium oxide nanoparticles (CNPs, or nanoceria) are among the most promising candidates due to their outstanding properties, including antioxidant, anti-inflammatory, antibacterial, and angiogenic activities. Much attention should be paid to the physical properties of nanoceria, since most of its biological characteristics are directly determined by some of these relevant parameters, including the particle size and shape. Nanoceria, either in bare or functionalized forms, showed the excellent capability of accelerating the healing process of both acute and chronic wounds. The skin, heart, nervous system, and ophthalmic tissues are the main targets of nanoceria-based therapies, and the other soft tissues may also be evaluated in upcoming experimental studies. For the repair and regeneration of soft tissue damage and defects, nanoceria-incorporated film, hydrogel, and nanofibrous sca olds have been proven to be highly suitable replacements with satisfactory outcomes. Still, some concerns have remained regarding the long-term e ects of nanoceria administration for human tissues and organs, such as its clearance from the vital organs. Moreover, looking at the future, it seems necessary to design and develop three-dimensional (3D) printed sca olds containing nanoceria for possible use in the concepts of personalized medicine.
  • 1.8K
  • 10 Oct 2020
Topic Review
Biomaterials for Ophthalmic Applications
Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials.
  • 1.8K
  • 22 Jun 2022
Topic Review
Dental Implant Surfaces
Bone healing process at the interface between bone and implant surface includes haemostasis, inflammation, proliferation, and remodeling. The modifications of titanium dental implant surface that are globally marketed focus on early bone response to switch more quickly from inflammation to proliferation by roughening the surface at the micro-scale. Microstructural modifications change cell behavior around the modified surface, successfully enhancing osseointegration, but they have their own limits. For example, such a modified surface cannot avoid implant failure resulting from shear force because of the occlusal load on the bone-implant interface. This type of failure is able to be bypassed by providing the implant macrodesign with threads, which convert shear force into compressive force that the interface is more resistant to. Dental clinicians and researchers should consider both the implant macrostructure and microstructure to better understand clinical bone response to the dental implant, although this topic is based on the surface microstructural modification. 
  • 1.7K
  • 23 Oct 2020
Topic Review
Toxicological Risks of the Cobalt–Chromium Alloys in Dentistry
Cobalt–chromium (Co-Cr) alloys have been used for a long period of time in dentistry, but several risk factors remain involved. The toxicological risk of Co-Cr dental alloys is actually a sensitive subject with the European regulatory changes, namely regulation (EU) 2017/745 and annex VI to the CLP regulation (EC) 1972/2008. Studies assessing Co-Cr dental alloys’ biocompatibility are urgently needed.
  • 1.7K
  • 22 Feb 2023
Topic Review
Plant-Based Biosynthesis of Copper/Copper Nanoparticles
Plants produce numerous secondary metabolites and rich in phytochemicals, which are potential bioresources for synthesizing Cu and CuO Nanoparticles (NPs). This green synthesis approach is environmentally friendly and more advantageous over commercial synthesis using physical and chemical methods. The green synthesized Cu and CuO NPs can be used as anticancer, antibacterial, antifungal and anti-inflammatory agents in biomedical applications. We discuss about the green synthesis of Cu and CuO NPs using various plants, factors affecting the synthesis, biomedical applications, and toxicity evaluation of the NPs. In addition, the mechanisms of the NPs entry into biological entities were also discussed. 
  • 1.7K
  • 01 Jun 2021
Topic Review
3D Printing
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies.
  • 1.7K
  • 20 Apr 2021
Topic Review
Microbial PolyHydroxyAlkanoate Biopolymers
PolyHydroxyAlkanoates (PHAs) fulfil every criterion set out in the definition of a natural polymer or a biopolymer. PHA biopolymers, a group of biopolyesters, are found in nature, and they are biosynthesized using renewable carbon in microbes. PHAs are biodegradable, because nature has the tools to convert them into CO2 and water and about 10% organic fertilizer or humus, the same as in the biodegradation of cellulose or cotton.
  • 1.7K
  • 07 Aug 2023
Topic Review
Synthesis of Hydrogels
Hydrogels are polymeric materials with a characteristic hydrophilic structure that enables the storage of large amounts of water and biological fluids in their three-dimensional (3D) network. For hydrogel synthesis, the incorporation of a cross-linking agent is important to achieve a better structuring due to its ability to form new polymeric chains within the structure through a large variety of reactions between different polymeric molecules or fibrous proteins.
  • 1.6K
  • 16 Aug 2022
Topic Review
Alginate-Based Biomaterials
Alginates are naturally occurring polysaccharides extracted from brown marine algae and bacteria. Being biocompatible, biodegradable, non-toxic and easy to gel, alginates can be processed into various forms, such as hydrogels, microspheres, fibers and sponges, and have been widely applied in biomedical field.
  • 1.6K
  • 31 May 2021
  • Page
  • of
  • 64