Topic Review
3D Braiding Technology
3D braiding technologies enable the production of structures with complex geometry, which are often used for lightweight solutions, for example in automotive engineering. In addition, medical technology offers wide-ranging applications for 3D braiding technology. 3D braided structures are defined as those with yarns that intersect in all three spatial directions. 3D braiding processes allow the fiber orientation to be easily influenced, thus ensuring high strength and stiffness with reduced mass.
  • 2.0K
  • 25 Aug 2021
Topic Review
Cobalt-Chromium Dental Alloys
The processing of Co–Cr alloys by melting and casting in refractory molds remains a viable method that can support innovation, in the context of technology advance in recent years towards digitalization of the manufacturing process, i.e., the construction of prosthetic frameworks conducted by additive methods using Co–Cr powder alloy.
  • 2.0K
  • 28 Jun 2022
Topic Review
Allium sativum (Garlic)
Garlic (Allium sativum) is an ancient civilised plant, originated from the Asian continent between the Mediterranean and China over 600 years ago. Humans use garlic as a medicinal herb in food as well as to relieve from pain and physical and emotional stress. Currently, people are looking for alternative natural medicine.
  • 2.0K
  • 08 Feb 2021
Topic Review
Bacterial Cellulose in Wastewater Treatment
Bacterial cellulose membranes have been shown to be efficient as filters for the removal of various contaminants, including biological and chemical agents or heavy metals. Therefore, their use could make an important contribution to bio-based technological development in the circular economy. Moreover, they can be used to produce new materials for industry, taking into consideration current environmental preservation policies aimed at a more efficient use of energy.
  • 2.0K
  • 28 Sep 2021
Topic Review
Luminogens with Aggregation-Induced Emission
Luminogens with aggregation-induced emission (AIEgens) have been widely applied in the field of photodynamic therapy. Among them, aggregation-induced emission photosensitizers (AIE–PSs) are demonstrated with high capability in fluorescence and photoacoustic bimodal imaging, as well as in fluorescence imaging-guided photodynamic therapy. They not only improve diagnosis accuracy but also provide an efficient theranostic platform to accelerate preclinical translation as well.
  • 1.9K
  • 21 Jan 2021
Topic Review
Applications of Natural Polymers-Based Materials
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. 
  • 1.9K
  • 06 Jan 2022
Topic Review
Non-Enzymatic Electrochemical Sensing
Simultaneous detection of analytes that together exist in biological organisms necessitates the development of effective and efficient non enzymatic electrodes in sensing. In this regard, development of sensing elements for detecting glucose and hydrogen peroxide (H2O2) is significant. The non-enzymatic sensing is more economical and has longer lifetime than enzymatic electrochemical sensing, but it has several drawbacks such as high working potential, slow electrode kinetics, poisoning from intermediate species and weak sensing parameters. Here is a comprehensive overview of the recent developments in non-enzymatic glucose and H2O2 (NEGH) sensing, by focusing mainly on sensing performance, electro catalytic mechanism, morphology and design of electrode materials. A comparison of glucose and H2O2 sensing parameters using same electrode materials is outlined to predict the efficient sensing performances of advanced nanomaterials with metal/metal oxides and hybrid metallic nanocomposites.
  • 1.8K
  • 24 Nov 2020
Topic Review
Nanomaterials Combined with Bacteriocins
Bacteriocins are antimicrobial peptides or proteinaceous materials produced by bacteria against pathogens. These molecules have high efficiency and specificity and are equipped with many properties useful in food-related applications, such as food preservatives and additives, as well as biomedical applications, such as serving as alternatives to current antibacterial, antiviral, anti-cancer, and antibiofilm agents. Despite their advantages as alternative therapeutics over existing strategies, several limitations of bacteriocins, such as the high cost of isolation and purification, narrow spectrum of activity, low stability and solubility, and easy enzymatic degradation, need to be improved. Nanomaterials are promising agents in many biological applications. They are widely used in the conjugation or decoration of bacteriocins to augment the activity of bacterioc-ins or reduce problems related to their use in biomedical applications. Therefore, bacteriocins combined with nanomaterials have emerged as promising molecules that can be used in various biomedical applications.
  • 1.8K
  • 11 Oct 2021
Topic Review
The Phosphorus Bond
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. 
  • 1.8K
  • 07 Mar 2022
Topic Review
Nanophotocatalysts
Biomedical waste management is getting significant consideration among treatment technologies, since insufficient management can cause danger to medicinal service specialists, patients, and their environmental conditions. The improvement of waste administration protocols, plans, and policies are surveyed, despite setting up training programs on legitimate waste administration for all healthcare service staff. Most biomedical waste substances do not degrade in the environment, and may also not be thoroughly removed through treatment processes. Therefore, the long-lasting persistence of biomedical waste can effectively have adverse impact on wildlife and human beings, as well. Hence, photocatalysis is gaining increasing attention for eradication of pollutants and for improving the safety and clearness of the environment due to its great potential as a green and eco-friendly process. In this regard, nanostructured photocatalysts, in contrast to their regular counterparts, exhibit significant attributes such as non-toxicity, low cost and higher absorption efficiency in a wider range of the solar spectrum, making them the best candidate to employ for photodegradation. Due to these unique properties of nanophotocatalysts for biomedical waste management, we aim to critically evaluate various aspects of these materials in the present review and highlight their importance in healthcare service settings.
  • 1.8K
  • 18 Aug 2020
  • Page
  • of
  • 64