Topic Review
Acute Kidney Injury in COVID-19
The coronavirus 2019 (COVID-19) pandemic has caused a huge impact on health and economic issues. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes cellular damage by entry mediated by the angiotensin-converting enzyme 2 of the host cells and its conjugation with spike proteins of SARS-CoV-2. Beyond airway infection and acute respiratory distress syndrome, acute kidney injury is common in SARS-CoV-2-associated infection, and acute kidney injury (AKI) is predictive to multiorgan dysfunction in SARS-CoV-2 infection. Beyond the cytokine storm and hemodynamic instability, SARS-CoV-2 might directly induce kidney injury and cause histopathologic characteristics, including acute tubular necrosis, podocytopathy and microangiopathy. The expression of apparatus mediating SARS-CoV-2 entry, including angiotensin-converting enzyme 2, transmembrane protease serine 2 (TMPRSS2) and a disintegrin and metalloprotease 17 (ADAM17), within the renal tubular cells is highly associated with acute kidney injury mediated by SARS-CoV-2. Both entry from the luminal and basolateral sides of the renal tubular cells are the possible routes for COVID-19, and the microthrombi associated with severe sepsis and the dysregulated renin–angiotensin–aldosterone system worsen further renal injury in SARS-CoV-2-associated AKI. In the podocytes of the glomerulus, injured podocyte expressed CD147, which mediated the entry of SARS-CoV-2 and worsen further foot process effacement, which would worsen proteinuria, and the chronic hazard induced by SARS-CoV-2-mediated kidney injury is still unknown. Therefore, the aim of the review is to summarize current evidence on SARS-CoV-2-associated AKI and the possible pathogenesis directly by SARS-CoV-2.
  • 679
  • 19 Nov 2020
Topic Review
Acute Myeloid Leukemia
The present investigation expands the knowledge on the immunogenic and tolerogenic potential of the chemotherapy drugs commonly used in the therapy of AML such as Daunorubicin, Cytarabine, Fludrabine and Etoposide . Among these, important differences have been observed, indicating that, particularly in an era when immunotherapy is being included in the clinical stage of AML treatment, the immunological perspective of chemotherapy should be taken into consideration in therapy decision-making. 
  • 734
  • 28 Sep 2020
Topic Review
Acute Respiratory Distress Syndrome
The pulmonary endothelium is a metabolically active continuous monolayer of squamous endothelial cells that internally lines blood vessels and mediates key processes involved in lung homoeostasis. Many of these processes are disrupted in acute respiratory distress syndrome (ARDS), which is marked among others by diffuse endothelial injury, intense activation of the coagulation system and increased capillary permeability. Most commonly occurring in the setting of sepsis, ARDS is a devastating illness, associated with increased morbidity and mortality and no effective pharmacological treatment. Endothelial cell damage has an important role in the pathogenesis of ARDS and several biomarkers of endothelial damage have been tested in determining prognosis. By further understanding the endothelial pathobiology, development of endothelial-specific therapeutics might arise. In this review, we will discuss the underlying pathology of endothelial dysfunction leading to ARDS and emerging therapies. Furthermore, we will present a brief overview demonstrating that endotheliopathy is an important feature of hospitalised patients with coronavirus disease-19 (COVID-19).
  • 974
  • 06 Feb 2022
Topic Review
ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms
Extracellular matrix (ECM) undergoes remodeling processes to regulate vascular smooth muscle and endothelial cells’ proliferation, differentiation, and adhesion. Abnormalities affecting the ECM can lead to alteration in cellular behavior and from this, this can conduce to the development of pathologies. Metalloproteases play a key role in maintaining the homeostasis of ECM by mediating the cleavage of different ECM components. There are different types of metalloproteases: matrix metalloproteinases (MMPs), disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs). ADAMTSs have been found to participate in cardiovascular physiology and diseases and specifically in aortic aneurysms. This entry aims to decipher the potential role of ADAMTS proteins in the physiopathologic development of Thoracic Aortic Aneurysms (TAA) and Abdominal Aortic Aneurysms (AAA).
  • 548
  • 12 Jan 2022
Topic Review
Adnexotropic Variants of Interface Dermatitides
Interface dermatitis is a pathological pattern characterized by the presence of basal cell vacuolization and apoptotic keratinocytes. A variety of dermatoses exhibit interface dermatitis on pathology including the lichenoid dermatoses, graft versus host disease, connective tissue diseases, and drug reactions, among others. Several entities of interface dermatitides are known to have distinct rare adnexotropic variants whereby the inflammation involves the adnexa of the skin such as the hair follicle or the sweat gland. In lichen planus for example, follicular and syringotropic variants have been classically described. Adnexal involvement can also at times be seen on histopathology of the interface dermatitides that do not have distinct adnexotropic variants. For example, adnexal inflammation can be seen in lichen striatus or in pityriasis lichenoides.
  • 906
  • 22 Sep 2021
Topic Review
Advanced Rectal Cancer
The response to neoadjuvant chemoradiation (nCRT) is a critical step in the management of locally advanced rectal cancer (LARC) patients. Only a minority of LARC patients responds completely to neoadjuvant treatments, thus avoiding invasive radical surgical resection. Moreover, toxic side effects can adversely affect patients’ survival. The difficulty in separating in advances responder from non-responder patients affected by LARC highlights the need for valid biomarkers that guide clinical decision-making. In this context, circulating tumor biomarkers (i.e., microRNAs, circulating tumor cells and cell-free nucleic acids), as well as single nucleotide polymorphisms (SNPs) associated with miRNAs (miR-SNPs)) seem to be promising candidates for predicting LARC prognosis and/or therapy response.
  • 554
  • 09 Oct 2020
Topic Review
Adverse Events of Biological Drugs
The aim of this study is to know the biological therapy drugs that are related to adverse events, what dental treatments are associated with the appearance of these events, their severity, and how they are resolved.
  • 383
  • 08 Jun 2021
Topic Review
Age-Related Hearing Loss
Age-related hearing impairment, also referred to as presbycusis, is the most common sensory impairment seen in the elderly. As our cochlea, the peripheral organ of hearing, ages, we tend to experience a decline in hearing and are at greater risk of cochlear sensory-neural cell degeneration and exacerbated age-related hearing impairments (e.g., gradual hearing loss, deterioration in speech comprehension, difficulty in the localization sound sources, and ringing sensations in the ears). Here, we outline recent research into major causal factors of age-related hearing loss including both extrinsic (e.g. noise and ototoxic medication), and intrinsic factors (e.g. genetic predisposition, epigenetic factors and aging).
  • 841
  • 23 Oct 2020
Topic Review
Air Pollution Induced Disorders
Air pollution is a heterogeneous mixture of various constituents resulting from the complex interaction of multiple emissions and chemical reactions. This mixture comprises solid particles and liquid droplets suspended in the air, i.e., PM2.5, that can include organic carbon (OC), elemental or black carbon (EC), nitrates, sulfates, and metals (e.g., iron, vanadium, nickel, copper, and manganese) as well as gases (e.g., ground level ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), oxides of nitrogen (NOx)) gaseous organic compounds (e.g., non-methane volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)), bacterial endotoxins (mostly bound to solid particles or liquid aerosols). There are two possible ways by which air pollutants enter the CNS, either through direct transport of particles into the CNS or via systemic inflammation upon initial recruitment of immune cells in the lung tissue. Once in the organism, the adverse effects of fine particulates on the brain rely mainly on three mechanisms. First, they can induce the release of proinflammatory mediators leading to chronic respiratory and systemic inflammation, thereby affecting the BBB and ultimately triggering neural-immune interaction and resulting in increased production of ROS and chronic oxidative stress. Second, the particles can damage the BBB through the direct formation of ROS and thereby alter the permeability of the barrier. Third, there can be mechanical stimulation of specific mechano-receptors in pulmonary tissue leading to the lung arc reflex and sympathetic activation with the release of vasoconstrictors such as catecholamines. 
  • 704
  • 26 Oct 2020
Topic Review
Airway Structural Changes in Asthma
Increased airway wall thickness and remodeling of bronchial mucosa are characteristic of asthma and may arise from altered integrin signaling on airway cells. Here, we analyzed the expression of β1-subfamily integrins on blood and airway cells (flow cytometry), inflammatory biomarkers in serum and bronchoalveolar lavage, reticular basement membrane (RBM) thickness and collagen deposits in the mucosa (histology), and airway geometry (CT-imaging) in 92 asthma patients (persistent airflow limitation subtype: n=47) and 36 controls. Persistent airflow limitation was associated with type-2 inflammation, elevated soluble α2 integrin chain, and changes in the bronchial wall geometry. Both subtypes of asthma showed thicker RBM than control, but collagen deposition and epithelial α1 and α2 integrins staining were similar. Type-I collagen accumulation and RBM thickness were inversely related to the epithelial expression of the α2 integrin chain. Expression of α2β1 integrin on T-cells and eosinophils was not altered in asthma. Collagen I deposits were, however, more abundant in patients with lower α2β1 integrin on blood and airway CD8+ T-cells. Thicker airway walls in CT were associated with lower α2 integrin chain on blood CD4+ T-cells and airway eosinophils. Our data suggest that α2β1 integrin on inflammatory and epithelial cells may protect against airway remodeling advancement in asthma.
  • 514
  • 30 Sep 2021
  • Page
  • of
  • 77