Topic Review
3D Bioprinting of Hyaline Articular Cartilage
Hyaline articular cartilage (HAC) is a smooth, wear-resistant, highly specialized hyaline cartilage covering the epiphyses and certain anatomical areas of the bone within the synovial joint capsule. HAC reduces friction, allowing smooth joint movement. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create.
  • 273
  • 27 Jun 2023
Topic Review
Vitamins B1, B3 and B6 in Charcot–Marie–Tooth Disease
The molecular mechanisms of Charcot–Marie–Tooth (CMT) disease, involving impaired vitamin metabolism and/or actions, are considered in light of the potential therapeutic actions of vitamins B1, B3 and B6 in the disease.
  • 724
  • 27 Jun 2023
Topic Review
Pheromones Secreted by Nematodes
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties.  Ascarosides (ASCRs) represent the majority of the pheromones secreted by nematodes. The molecular formula for an ascaroside, C33H68O4, was first proposed by Schulz and Becker in 1933. Different phenotypes of nematode species are produced by different ascarosides or combinations of ascarosides; even slight changes in the chemical structure tend to produce drastically different patterns of activity. As a rule, the patterns of the biosynthesis of ascarosides are linked to the phylogeny, lifestyle, and ecological niche of the organism. In addition, different concentrations of the same ascarosides can have different effects on nematodes. Other chemicals such as vanillic acid function as pheromones in some nematodes, but there have been comparatively few studies and discoveries in this area.
  • 462
  • 27 Jun 2023
Topic Review
Dynamics of Glucose Transport in Escherichia coli
Escherichia coli is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of E. coli for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways. The genome of E. coli MG1655 is 4,641,642 bp, corresponding to 4702 genes encoding 4328 proteins. The EcoCyc database describes 532 transport reactions, 480 transporters, and 97 proteins involved in sugar transport. Nevertheless, due to the high number of sugar transporters, E. coli uses preferentially few systems to grow in glucose as the sole carbon source. E. coli nonspecifically transports glucose from the extracellular medium into the periplasmic space through the outer membrane porins. Once in periplasmic space, glucose is transported into the cytoplasm by several systems, including the phosphoenolpyruvate-dependent phosphotransferase system (PTS), the ATP-dependent cassette (ABC) transporters, and the major facilitator (MFS) superfamily proton symporters.
  • 373
  • 27 Jun 2023
Topic Review
Long Non-Coding RNAs in Gliomas
Glioma progression refers to the development and growth of glioma tumors in the brain. Glioma progression is a complex and multifactorial process involving various genetic, molecular, and cellular changes. The prognosis and survival rates for gliomas differ between adults and pediatrics. Overall, pediatric gliomas tend to have better prognoses compared to gliomas in adults. This is partly due to the prevalence of low-grade tumors in children, which generally have better outcomes than high-grade tumors such as glioblastoma. However, certain pediatric gliomas, such as DIPG, have particularly poor prognoses. The mechanism of glioma progression involves a complex interplay of genetic, molecular, cellular, and microenvironmental factors. Generally, glioma progression is driven by the accumulation of genetic mutations.
  • 333
  • 27 Jun 2023
Topic Review
Epigenetic Alterations of Bladder Cancer
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. BLCA predominantly originates in the urothelium, which refers to the epithelial tissue lining the inner surface of the bladder and other urinary organs. This characteristic gives rise to urothelial carcinoma, which represents the most prevalent form of bladder cancer, constituting approximately 80–90 percent of all BLCA cases.
  • 306
  • 27 Jun 2023
Topic Review
Diagnosis and Treatment of Endometrial Cancer
The incidence and death rates of endometrial cancer are rising globally. International guidelines recommend radical hysterectomy and bilateral salpingo-oophorectomy as the standard of care for this cancer; however, fertility-sparing alternatives should be tailored to motivated women of reproductive age, establishing an appropriate cost–benefit balance between childbearing desire and cancer risk. New molecular classifications such as that of The Cancer Genome Atlas (TCGA) provide a robust supplementary risk assessment tool that can tailor the treatment options to the patient’s needs, curtail over- and under-treatment, and contribute to the spread of fertility-preserving strategies.
  • 226
  • 27 Jun 2023
Topic Review
Bacteria-Assisted Phytoremediation
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority. 
  • 267
  • 27 Jun 2023
Topic Review
Zoo Animal Welfare Assessment
Zoological institutions, such as zoos and aquariums, have made animal welfare a top priority, as it is not only a moral obligation but also crucial for fulfilling their roles in education and conservation. Thus, there is a need for science-based tools to assess and monitor animal welfare in these settings.
  • 272
  • 27 Jun 2023
Topic Review
Antioxidant Compounds of Mushrooms as Neuroprotective Agents
Mushrooms have been used for their nutritional value and medicinal properties. They therefore represent not only a food but also a precious source of biologically active compounds that act as nutraceuticals. Numerous studies have shown that edible mushrooms possess anticancer, anti-atherosclerotic, hypocholesterolemic, hypolipidemic, antiviral, antimicrobial, immunostimulant, anti-inflammatory, antioxidant, and anti-aging effects. The antioxidant properties of edible mushrooms are mainly related to their content in phenolic compounds and polysaccharides. Among polyphenol groups, phenolic acids are the main antioxidants, whereas the major antioxidant effects of polysaccharides are attributed to beta-glycans. These compounds show significant reactive oxygen species (ROS) scavenging activity and are also able to stimulate the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymes.
  • 353
  • 27 Jun 2023
  • Page
  • of
  • 1815
ScholarVision Creations