Topic Review
Dunaliella salina
Dunaliella sp. is a unicellular, halophilic, biflagellate, naked green alga Phylum Chlorophyta, Class Chlorophyceae, order Volvocales, family Polyblepharidaceae with a total of 29 species, as well as several varieties and forms.
  • 1.1K
  • 23 Sep 2022
Topic Review
S-Nitrosylation
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
  • 1.1K
  • 09 Aug 2021
Topic Review
Maximum Genetic Diversity
Maximum Genetic Diversity (MGD) is a scientific hypothesis relating to molecular evolution, which is the study of how and why populations of organisms experience genetic changes over time. MGD starts with the observation that some regions of the genome are more likely to preserve mutations into the next generation than others. This difference in the observed rate of mutation means some regions of the genome appear to mutate faster than others, and is theorized to relate to balancing the preservation of vital information relating to a species' function against its ability to mutate and adapt to new environmental niches. According to MGD, these regions of the genome eventually drift into two rough categories: faster-mutating sections tuned to respond quickly to environmental pressures and allow adaptive radiation, as well as slower-mutating sections involved in an organism's most fundamental instructions. Because MGD asserts that only slow-mutating genes accurately reflect shared evolutionary history, relationships between species can alternatively be calculated by their "maximum genetic diversity," which is determined by measuring the frequency of mutations in specific corresponding regions of orthologous genes instead of using raw overall genetic similarity. Using calculations based on mutations in these slow-mutating genes provides a chart of genetic ancestry that lines up with the fossil record – measurements based on raw genetic similarity yield results that clash with the fossil record. Also due to this grouping into fast and slow, MGD hypothesizes that over time complex organisms become genetically fragile and less tolerant to mutation as their MGD decreases, since an increasing proportion of their genome will have become slow-mutating over time. MGD asserts that this is because increased organismal and social complexity means more of the genome is needed to preserve the expanding instructional manual necessary for complex behavior and function, and so more of an organism's genome must become slow-mutating as the organism increases in complexity, since being slow-mutating preserves and protects those vital instructions. MGD seeks to reconcile the inconsistencies observed around the neutral theory of molecular evolution, whose "original lines of evidence... are now falsified" according to a paper published in Oxford's Molecular Biology and Evolution in 2018. One example of this is that supposedly consistent and neutral mutation rates from proteins across a wide range of species were demonstrably not neutral nor consistent. Another study published in Nature in December 2019 noted that "defining the evolutionary time scales according to the molecular clock is intrinsically biased, especially for proteins of complex organisms." Although a number of other arguments have been proposed against the neutral theory in recent years, there is not a yet a consensus that the neutral theory is entirely falsified and counter-arguments against the role of selection do exist. Furthermore, beyond the fact that MGD is still relatively unknown, it also contradicts the current paradigm in molecular evolution, since the neutral theory's fundamental premises are still nearly ubiquitously utilized in genetic analysis and admixture studies. Additionally, some of the phenomena explained by MGD could theoretically be accounted for by other processes such as gene conversion or concerted evolution. Lastly, even if the neutral theory is disproved, it does not necessarily validate MGD, as alternative theories have been proposed that also incorporate the effects of selection on the genome. And so MGD will have to be more rigorously tested against any alternative theories before becoming widely adopted. However, to date MGD has not been contradicted in peer-reviewed literature, and its assumptions and framework have been confirmed when it comes to examining the ratio of brain-specific proteins in a range of mammals, for classifying and timing the evolutionary genetic structure of a wide range of organisms ranging from yeast to primates, by evaluating the genetic fitness of yeast which become more genetically fragile as they become more fit, by a genetic model that seeks to more accurately model not only the location of mutations but the rate at which they occur, and by the observation that vital slow-mutating genes are more protected by "transcriptional scanning" in mammalian testes than fast-evolving genes involved with responding quickly to environmental challenges.
  • 1.1K
  • 25 Nov 2022
Topic Review
Montology
"Montology" is the holistic, integrative and transdisciplinary science of mountains, inclusive of physical, social, theoretical and empirical disciplines, as well as humanities and arts associated with mountainscapes.
  • 1.1K
  • 29 Oct 2020
Topic Review
Zika Virus
Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, β-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6h and 24h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to being a major contributor in the spread of the virus in cases of vertical transmission.
  • 1.1K
  • 30 Oct 2020
Topic Review
Influence of Sulfur on the Origin of Life
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. 
  • 1.1K
  • 28 Dec 2022
Topic Review
ESKAPE Bacteria in the Dog
ESKAPE bacteria (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a group of common opportunistic pathogens associated mainly with nosocomial infections.
  • 1.1K
  • 30 Oct 2020
Topic Review
The Sumoylation Pathway
Post-translational modifications (PTMs) are key regulators of most biological processes. Besides phosphorylation, methylation, acetylation and others, covalent modification of proteins by small polypeptides of the ubiquitin-like modifiers (UBLs) family have gained importance. Among UBLs, the small ubiquitin-like modifier (SUMO), of ~90 amino acids and discovered in the nineties, has proven to regulate most cellular processes. The sumoylation pathway is quite similar to the ubiquitination pathway, but there is its own set of enzymes for modification by SUMO.
  • 1.1K
  • 25 Jul 2022
Topic Review
Erythritol
The sugar alcohol erythritol is a relatively new food ingredient. It is naturally occurring in plants, however, produced commercially by fermentation. It is also produced endogenously via the pentose phosphate pathway (PPP). Consumers perceive erythritol as less healthy than sweeteners extracted from plants, including sucrose. 
  • 1.1K
  • 09 Jan 2023
Topic Review
The Key Precursors of Brain Acetyl-CoA
Acetyl-CoA  is a principal substrate feeding tricarboxylic acid (TCA). cycle  and energy production. Brain displays high demand for energy due to high frequency of neuronal depolarizatio-repolarization cycles. Therefore, adequate provision of acetyl-CoA precursors is critical factor for proper neuronal activity and survival. 
  • 1.1K
  • 22 Sep 2022
  • Page
  • of
  • 1814
Video Production Service