Topic Review
WNT10A Gene
WNT family member 10A.
  • 367
  • 24 Dec 2020
Topic Review
WNT Signalling in Dental Pathologies
Great efforts have been made over the past decades to discover new therapeutic targets for a big variety of human pathologies. Most of the studies dealing with severe pathological conditions such as cancers and tissue malformations are focused on the role of either widely recognized master controlling genes such as ras and myc or pivotal components of key signalling pathways, among which Wnt and Notch. However, these genes and molecules are fundamental for paired embryogenesis as well as for tissue and organ homeostasis and regeneration, where they regulate cell proliferation, migration, differentiation and apoptosis. The precise timing and localization of their activation are important to ensure the appropriate cellular functions in physiological conditions. Thus, their indiscriminate targeting is not desirable, due to both the high risk of severe side effects and the certainty of broad phenotypic consequences. On the contrary, optimal therapeutic targets should be selected based on their tissue, time and pathology specific roles. Here, we suggest a paradigmatic example of such target molecules that could be represented by the Wnt/b-catenin signalling components Bcl9 and Bcl9l. 
  • 1.0K
  • 05 Nov 2020
Topic Review
Wnt Signalling in Alzheimer’s Brain
The Wnt signalling system is essential for both the developing and adult central nervous system. It regulates numerous cellular functions ranging from neurogenesis to blood brain barrier biology. Dysregulated Wnt signalling can thus have significant consequences for normal brain function, which is becoming increasingly clear in Alzheimer's disease (AD), an age-related neurodegenerative disorder that is the most prevalent form of dementia. AD exhibits a range of pathophysiological manifestations including aberrant amyloid precursor protein processing, tau pathology, synapse loss, neuroinflammation and blood brain barrier breakdown, which have been associated to a greater or lesser degree with abnormal Wnt signalling. 
  • 778
  • 23 Jan 2021
Topic Review
Wnt Signaling Triggers Macropinocytosis
Membrane trafficking, including endocytosis and exocytosis, is very important in the interaction between cells and their environment. Endocytosis mediates the degradation of receptors, hence downregulating signaling pathways. The Wnt pathway is essential for cellular functions, such as cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development, including axis formation. Macropinocytosis is the large nonselective uptake of molecules such as nutrients and other macromolecules in the cellular environment.
  • 538
  • 24 May 2022
Topic Review
Wnt Signaling to Vascular Complications in T2DM
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents “mandatory damage” in the development of microvascular complications and only “introductory damage” in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. 
  • 492
  • 04 Jul 2022
Topic Review
WNT Signaling Pathways in Skin Development
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway.
  • 360
  • 06 Dec 2023
Topic Review
Wnt Signaling Pathway in Liver Metastasis
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored.
  • 451
  • 03 Nov 2021
Topic Review
Wnt Signaling in Pain
The heterogeneity of Wnt signaling starts with the ligand itself. There are 19 members of the Wnt family in humans and rodents, each one with a different expression pattern and function. These ligands bind different kinds of receptors: the classical Frizzled (Fzd) receptors (a family of G protein-coupled receptors that comprises 10 members in vertebrates), which are frequently associated with co-receptors, such as low-density lipoprotein receptor-related protein 5/6 (LRP5/6), the RTKs, receptor-like tyrosine kinase (Ryk), receptor tyrosine kinase-like orphan receptor 2 (Ror2), protein-tyrosine kinase-7 (PKT7), and muscle-specific kinase (MuSK), or proteoglycans. Usually, many ligands can bind the same receptor and one ligand can bind different receptors, increasing the complexity of Wnt signaling.
  • 699
  • 24 Oct 2022
Topic Review
Wnt Signaling and Aging of the Gastrointestinal Tract
Wnt signaling plays an essential role in aging of the gastrointestinal tract. Aberration of Wnt signaling seen in aged animals has been shown to affect regenerative capacity and differentiation of intestinal stem cells and promote aging-related deterioration. Similarly, abnormal Wnt signaling was observed in the aged stomach. Specifically, enhanced Wnt signaling in organoids established from the stomachs of aged mice induced the expression of Tbx3, a transcription factor that suppress cellular senescence, and led to augmented cellular proliferation. The enhanced Wnt signaling was due to suppressed Dkk3, a Wnt inhibitor, in aged gastric organoids. With respect to the role of TBX3 in humans, expression of TBX3 in human gastric tissues exhibited positive correlation with patients' age whereas that of DKK3 showed negative correlation with patients' age. In addition, TBX3 expression was also confirmed in gastric cancer tissues but not in normal gastric mucosae. These findings indicated that this DKK3-Wnt-TBX3 pathway may contribute to aging-related gastric carcinogenesis.
  • 439
  • 25 Oct 2022
Topic Review
WNT Signaling
The WNT signaling pathway is an evolutionarily conserved signal transduction pathway that regulates a wide range of cellular functions during development and adulthood. It controls multiple aspects of development, including cell proliferation, cell fate determination, apoptosis, cell migration and cell polarity during development and stem cell maintenance in adults. Inappropriate activation of the WNT pathway is also a major factor in human oncogenesis.
  • 1.2K
  • 11 Mar 2022
  • Page
  • of
  • 1814
Video Production Service