Topic Review
3-D structures of Potent Antimicrobial Peptides
Global rise of infections and deaths caused by drug-resistant bacterial pathogens are among the unmet medical needs. In an age of drying pipeline of novel antibiotics to treat bacterial infections, antimicrobial peptides (AMPs) are proven to be valid therapeutics modalities.  Direct in vivo applications of many AMPs could be challenging; however, works are demonstrating encouraging results for some of them.
  • 553
  • 05 May 2022
Topic Review
3-hydroxy-3-methylglutaryl-CoA Lyase Deficiency
3-hydroxy-3-methylglutaryl-CoA lyase deficiency (also known as HMG-CoA lyase deficiency) is an uncommon inherited disorder in which the body cannot process a particular protein building block (amino acid) called leucine. Additionally, the disorder prevents the body from making ketones, which are compounds that are used for energy during periods without food (fasting).
  • 483
  • 23 Dec 2020
Topic Review
3-hydroxyacyl-CoA Dehydrogenase Deficiency
3-hydroxyacyl-CoA dehydrogenase deficiency is an inherited condition that prevents the body from converting certain fats to energy, particularly during prolonged periods without food (fasting).
  • 465
  • 23 Dec 2020
Topic Review
3-M Syndrome
3-M syndrome is a disorder that causes skeletal abnormalities including short stature (dwarfism) and unusual facial features. The name of this condition comes from the initials of three researchers who first identified it: Miller, McKusick, and Malvaux.
  • 448
  • 23 Dec 2020
Topic Review
3-methylglutaconyl-CoA Hydratase Deficiency
3-methylglutaconyl-CoA hydratase deficiency is an inherited condition that causes neurological problems. Beginning in infancy to early childhood, children with this condition often have delayed development of mental and motor skills (psychomotor delay), speech delay, involuntary muscle cramping (dystonia), and spasms and weakness of the arms and legs (spastic quadriparesis). Affected individuals can also have optic atrophy, which is the degeneration (atrophy) of nerve cells that carry visual information from the eyes to the brain.
  • 417
  • 23 Dec 2020
Topic Review
3,7-Dioleylquercetin
Quercetin is a well-known plant flavonol and antioxidant; however, there has been some debate regarding the efficacy and safety of native quercetin as a skin-whitening agent via tyrosinase inhibition. Several researchers have synthesized quercetin derivatives as low-toxicity antioxidants and whitening agents. However, no suitable quercetin derivatives have been reported to date. In this study, a novel quercetin derivative was synthesized by the SN2 reaction using quercetin and oleyl bromide. The relationship between the structures and activities of quercetin derivatives as anti-melanogenic agents was assessed using in vitro enzyme kinetics, molecular docking, and quenching studies; cell line experiments; and in vivo zebrafish model studies. Novel 3,7-dioleylquercetin (OQ) exhibited a low cytotoxic concentration level at >100 µg/mL (125 µM), which is five times less toxic than native quercetin.
  • 467
  • 06 May 2021
Topic Review
3′UTR Length Dynamics: Releasing mRNAs from Stability Control
The 3′Untranslated regions (3′UTRs) of mRNAs, are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Although initially considered as stabilizing features of the ORF, further work identified a number of new 3’UTR functions that controlled where, when and how mRNAs were translated. Furthermore, recent research has enriched the view of 3’UTRs from static regulators of mRNA translation to highly dynamic and modular regulatory platforms that respond to different stimuli by changing their structure. By using alternative polyadenylation and cleavage sites, alternative exons or by including exonized Alu cassettes, 3’UTRs modify their length, change their sequence and consequently their inventory of associated regulatory sites to establish different co-regulatory events.
  • 1.5K
  • 13 Sep 2022
Topic Review
3C Protease as Ferroptosis Inducer
Regulated cell death (RCD) is a fundamental process common to nearly all living beings and essential for the development and tissue homeostasis in animals and humans. A wide range of molecules can induce RCD including a number of viral proteolytic enzymes. To date, numerous data indicate that picornaviral 3C proteases can induce RCD. In most reported cases, these proteases induce classical caspase-dependent apoptosis. In contrast, the human hepatitis A virus 3C protease (3Cpro) has recently been shown to cause caspase-independent cell death accompanied by previously undescribed features. In the current topic the results of the study where 3Cpro-induced cell death was characterized morphologically and biochemically are presented. It was found that dead cells demonstrated necrosis-like morphological changes including permeabilization of plasma membrane, loss of mitochondrial potential, as well as mitochondria and nuclei swelling. Additionally, it was shown that 3Cpro-induced cell death was efficiently blocked by ferroptosis inhibitors and was accompanied by intense lipid peroxidation. Taken together, these results indicate that 3Cpro induces ferroptosis upon its individual expression in human cells. This is the first demonstration that a proteolytic enzyme can induce ferroptosis, the recently discovered and actively studied type of RCD.
  • 776
  • 22 Sep 2021
Topic Review
3D Bioprinted Vascularized Tumour
An in vitro screening system for anti-cancer drugs cannot exactly reflect the efficacy of drugs in vivo, without mimicking the tumour microenvironment (TME), which comprises cancer cells interacting with blood vessels and fibroblasts. Additionally, the tumour size should be controlled to obtain reliable and quantitative drug responses. Herein, we report a bioprinting method for recapitulating the TME with a controllable spheroid size. The TME was constructed by printing a blood vessel layer consisting of fibroblasts and endothelial cells in , alginate, and fibrinogen, followed by seeding multicellular tumour spheroids (MCTSs) of glioblastoma cells (U87 MG) onto the blood vessel layer. Under MCTSs, sprouts of blood vessels were generated and surrounding MCTSs thereby increasing the spheroid size. The combined treatment involving the anti-cancer drug temozolomide (TMZ) and the angiogenic inhibitor sunitinib was more effective than TMZ alone for MCTSs surrounded by blood vessels, which indicates the feasibility of the TME for in vitro testing of drug efficacy. These results suggest that the bioprinted vascularized tumour is highly useful for understanding tumour biology, as well as for in vitro drug testing.
  • 1.2K
  • 29 Oct 2020
Topic Review
3D Bioprinting for Cancer Modeling and Personalized Medicine
Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. Various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. 
  • 608
  • 08 Apr 2022
  • Page
  • of
  • 1814
Video Production Service