Topic Review
Implementing Sustainable Irrigation
      The sustainability of irrigated agriculture is threatening due to adverse climate change, given future projections that every one in four people on Earth might be suffering from extreme water scarcity by the year 2025. Pressurized irrigation systems and appropriate irrigation schedules can increase water productivity (i.e., product yield per unit volume of water consumed by the crop) and reduce the evaporative or system loss of water as opposed to traditional surface irrigation methods. However, in water-scarce countries, irrigation management frequently becomes a complex task. Deficit irrigation and the use of non-conventional water resources (e.g., wastewater, brackish groundwater) has been adopted in many cases as part of a climate change mitigation measures to tackle the water poverty issue. Protected cultivation systems such as greenhouses or screenhouses equipped with artificial intelligence systems present another sustainable option for improving water productivity and may help to alleviate water scarcity in these countries. This article presents a comprehensive review of the literature, which deals with sustainable irrigation for open-field and protected cultivation systems under the impact of climatic change in vulnerable areas, including the Mediterranean region.
  • 1.1K
  • 27 Apr 2023
Topic Review
Essential Oils Effect on Cucumber Powdery Mildew
Essential oils of lemongrass, lemon, thyme, peppermint, abundance blend, purification blend, and thieves blend were tested in vitro and under greenhouse conditions in two separate experiments. The effects of essential oils were tested against powdery mildew disease at concentrations of 1.0–2.5 mL/L, and the consequent impact of the oils on plant growth was evaluated. Powdery mildew fungus, Podosphaera xanthii, was identified using sequencing of the ITS region. The essential oils significantly reduced disease incidence up to 77.3% compared with the positive control (p < 0.5). 
  • 1.1K
  • 07 Dec 2021
Topic Review
Factors influence skin barrier dysfunction
Atopic dermatitis (AD) is an eczematous, pruritic skin disorder with extensive barrier dysfunction and elevated interleukin (IL)-4 and IL-13 signatures. The barrier dysfunction correlates with the downregulation of barrier-related molecules such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL). IL-4 and IL-13 potently inhibit the expression of these molecules by activating signal transducer and activator of transcription (STAT)6 and STAT3. In addition to IL-4 and IL-13, IL-22 and IL-17A are probably involved in the barrier dysfunction by inhibiting the expression of these barrier-related molecules. In contrast, natural or medicinal ligands for aryl hydrocarbon receptor (AHR) are potent upregulators of FLG, LOR, and IVL expression. As IL-4, IL-13, IL-22, and IL-17A are all capable of inducing oxidative stress, antioxidative AHR agonists such as coal tar, glyteer, and tapinarof exert particular therapeutic efficacy for AD. These antioxidative AHR ligands are known to activate an antioxidative transcription factor, nuclear factor E2-related factor 2 (NRF2). This article focuses on the mechanisms by which FLG, LOR, and IVL expression is regulated by IL-4, IL-13, IL-22, and IL-17A. The author also summarizes how AHR and NRF2 dual activators exert their beneficial effects in the treatment of AD.
  • 1.1K
  • 11 Aug 2020
Topic Review
Nano-Enabled Products for Sustainable Agriculture
Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1–100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. 
  • 1.1K
  • 16 Dec 2021
Topic Review
MRNA Encoded Antibodies
The field of mRNA has made significant progress in the last ten years and has emerged as a highly attractive means of encoding and producing any protein of interest in vivo. Through the natural role of mRNA as a transient carrier of genetic information for translation into proteins, in vivo expression of mRNA-encoded antibodies offer many advantages over recombinantly produced antibodies.
  • 1.1K
  • 22 Mar 2021
Topic Review
Influence of Sulfur on the Origin of Life
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. 
  • 1.1K
  • 28 Dec 2022
Topic Review
Animal and Plant Protein Oxidation
Protein oxidation, a phenomenon that was not well recognized previously but now better under-stood, is a complex chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as well in in situ studies.
  • 1.1K
  • 13 Jan 2021
Topic Review
Dioxin in Kidney Disease
Endocrine disrupting chemicals (EDCs) are a class of hormone-like chemicals that exist in the environment and interfere with the production, transport, metabolism, regulation, degradation, and/or action of hormones. The kidney is one of the most important organs in the urinary system and an accumulation point. Dioxins were identified as toxic compounds in the 1960s. Dioxins are a group of structurally related chemicals composed of two coplanar benzene rings.
  • 1.1K
  • 09 Jan 2023
Topic Review
Astrocyte Pathology in Neurodevelopmental Disorders
The discovery in the last decade of unique astroglial features that include their role in synaptic plasticity and memory function has broadened and refurbished the conception of brain function in health and disease. Astrocytes are both necessary and sufficient for memory function, and contribute to the pathophysiology of cognitive and intellectual disability disorders such as Alzheimer’s disease, Fragile X syndrome (FXS), or Down syndrome (DS). We review some of the most relevant studies demonstrating that astrocytes are involved in the synaptic pathology of the two most common genetic forms of intellectual disability (FXS and DS).
  • 1.1K
  • 11 Dec 2020
Topic Review
Congenital Insensitivity to Pain
Congenital insensitivity to pain is a condition that inhibits the ability to perceive physical pain.
  • 1.1K
  • 24 Dec 2020
  • Page
  • of
  • 1815
ScholarVision Creations