Topic Review
Fabrication of Organ-on-Chip
Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue–tissue interaction, and replicating numerous human pathologies.
  • 1.5K
  • 26 Apr 2022
Topic Review
LAB-Fermented Foods
Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. LAB are responsible for a great diversification in the flavor and texture of fermented foods. They can also release an array of health-modulating compounds and signal molecules in the matrix during fermentation. These food-derived bacteria and their metabolites can interact with the intestinal microbiome and with the host itself like members of an orchestra playing a health symphony for the intestine and the organisms in general
  • 1.5K
  • 29 Mar 2022
Topic Review
Electrochemical Detection for Antibody Detection
Detection of biomarkers has raised much interest recently due to the need for disease diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers, antibodies are an important type of detection target due to their potential for indicating disease progression stage and the efficiency of therapeutic antibody drug treatment. In this review, electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for electrochemical detection are suggested. For optical transduction, a rapid and programmable platform for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies have demonstrated their potential for resolving current challenges in antibody detection such as high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling detection. This review provides a general update for recent developments in antibody detection strategies and potential solutions for future clinical point-of-care systems.
  • 1.5K
  • 23 Oct 2020
Topic Review
Biological Nitrogen Fixation in Agriculture
Biological nitrogen fixation (BNF) is a natural process of changing atmospheric nitrogen (N2) into a simple soluble nontoxic form (NH4+ primarily) which is used by plant cell for synthesis of various biomolecules. Nitrogen fixation is one of the major sources of nitrogen for plants and a key step distributing this nutrient in the ecosystem. Optimization of BNF is critical to sustain both food production and environmental health. 
  • 1.5K
  • 17 Oct 2022
Topic Review
Phthalic Acid Esters
Phthalic acid esters (PAEs) are a class of lipophilic chemicals widely used as plasticizers and additives to improve various products’ mechanical extensibility and flexibility. At present, synthesized PAEs, which are considered to cause potential hazards to ecosystem functioning and public health, have been easily detected in the atmosphere, water, soil, and sediments; PAEs are also frequently discovered in plant and microorganism sources, suggesting the possibility that they might be biosynthesized in nature.
  • 1.5K
  • 29 Jul 2021
Topic Review
Pathophysiology of Pulmonary Fibrosis
Pulmonary fibrosis (PF) is a feared outcome of many pulmonary diseases which results in a reduction in lung compliance and capacity. The development of PF is relatively rare, but it can occur secondary to viral pneumonia, especially COVID-19 infection. While COVID-19 infection and its complications are still under investigation, researchers can look at a similar outbreak in the past to gain better insight as to the expected long-term outcomes of COVID-19 patient lung function.
  • 1.5K
  • 24 Aug 2022
Topic Review
Microalgae Impact on Oral Health
Microalgae and cyanobacteria could represent a potential natural alternative to antibiotic, antiviral, or antimycotic therapies, as well as a good supplement for the prevention and co-adjuvant treatment of different oral diseases.
  • 1.5K
  • 24 Nov 2020
Topic Review
Thaumarchaeota
The Thaumarchaeota or Thaumarchaea (from the Ancient Greek:) are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Crenarchaeota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Thaumarchaea, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites. Thaumarchaeota-derived GDGT lipids from marine sediments can be used to reconstruct past temperatures via the TEX86 paleotemperature proxy, as these lipids vary in structure according to temperature. Because most Thaumarchaea seem to be autotrophs that fix CO2, their GDGTs can act as a record for past Carbon-13 ratios in the dissolved inorganic carbon pool, and thus have the potential to be used for reconstructions of the carbon cycle in the past.
  • 1.5K
  • 20 Oct 2022
Topic Review
Suture Mesenchymal Stem Cells
Suture mesenchymal stem cells (SuSCs), a heterogeneous stem cell population, belong to mesenchymal stem cells (MSCs) or skeletal stem cells (SSCs), with the ability to self-renew and undergo multi-lineage differentiation. Unlike the well-established perivascular niche of SSCs in the long bone, stem cells of the cranial bone are generally located and confined within the cranial suture mesenchyme, subsequently defined as SuSCs. In the long bone, SSCs play an essential role in plenty of physiological processes, such as growth and development, life-long homeostasis, and fracture healing. Similarly, as the major stem cell population of cranial bones, the physiological significance of SuSCs is undoubted and self-evident. 
  • 1.5K
  • 22 Sep 2021
Topic Review
Flavonoids and Isoflavonoids Biosynthesis
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.
  • 1.5K
  • 20 Aug 2020
  • Page
  • of
  • 1815
ScholarVision Creations