Topic Review
Alveolar Bone Regeneration and Mesenchymal Stem Cells
Mesenchymal stem cells/stromal cells (MSCs), which have been applied in implantology and periodontology. MSCs, with their multilineage differentiation potential (differentiation into osteocytes, chondrocytes, adipocytes, muscle cells, and even neurocytes) are widely available from various tissues sources.
  • 557
  • 17 Nov 2021
Topic Review
Alveolar Epithelial Cells in Pulmonary Fibrosis
An important contributor to the development of idiopathic pulmonary fibrosis (IPF) is the alteration of the intracellular homeostasis of alveolar epithelial cells, which are mainly composed of alveolar type I epithelial cells (AT1), alveolar type II epithelial cells (AT2), as well as abnormal basaloid cells, resulting in aberrant epithelial repair, myofibroblast activation, and increased extracellular matrix deposition to form lung fibrosis
  • 577
  • 27 Feb 2023
Topic Review
Alveolar Macrophages
At the early stages of life development, alveoli are colonized by embryonic macrophages, which become resident alveolar macrophages (ResAM) and self-sustain by local division. Genetic and epigenetic signatures and, to some extent, the functions of ResAM are dictated by the lung microenvironment, which uses cytokines, ligand-receptor interactions, and stroma cells to orchestrate lung homeostasis. 
  • 721
  • 05 Nov 2021
Topic Review
Alveolar NLRP3 Inflammasome Regulators
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology. 
  • 472
  • 24 Nov 2021
Topic Review
Alveolar Regeneration in COVID-19 Patients: Network Perspective
Lung alveolar regeneration to repair the damaged tissue and restoration of normal tissue function could be achieved by transplantation of progenitor or stem cells and exosome-mediated delivery of therapeutic agents, including miRNAs. Not only as a biomarker of COVID-19but also as therapeutic agents, miRNAs have proven to play a crucial role in lung damage and repair. miRNAs can either be regulated locally in the lungsor transported to the damaged site by extracellular vehicles (EVs) secreted by stem cells to induce tissue regeneration by decreasing inflammation and apoptosis, stimulating surfactant production, regulating gene expression of junction proteins to repair microvascular permeability, and reducing fibrosis.
  • 631
  • 03 Nov 2021
Topic Review
Alveolar Type 2 Epithelial Cell Organoid Culture Methods
Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of type 2 alveolar cells (AT2) cells, media composition, and feeder cell origins. 
  • 152
  • 14 Nov 2023
Topic Review
Alveologenesis
Alveologenesis is the final stage of lung maturation, when an alveolar region is divided into smaller units called alveoli via the process known as secondary septation. Each of the formed septa serves as a new gas exchange surface, and all together, they dramatically increase the respiratory surface area. Alveologenesis is divided into 2 phases: classical and continued. During the classical alveologenesis, the secondary septa are formed and the number of alveoli increases. During the continued alveologenesis, the maturation and thinning of the septa occur and the size of alveoli increases. The disruption of alveologenesis leads to the simplification of the alveoli, as seen in preterm infants diagnosed with bronchopulmonary dysplasia (BPD), a widespread pulmonary disease that is often connected with lifelong respiratory failure.
  • 835
  • 23 Nov 2021
Topic Review
ALX4 Gene
ALX homeobox 4. The ALX4 gene provides instructions for making a member of the homeobox protein family.
  • 495
  • 24 Dec 2020
Topic Review
Alymphoid Cystic Thymic Dysgenesis
T-cell immunodeficiency, congenital alopecia, and nail dystrophy is a type of severe combined immunodeficiency (SCID), which is a group of disorders characterized by an almost total lack of immune protection from foreign invaders such as bacteria and viruses. People with this form of SCID are missing functional immune cells called T cells, which normally recognize and attack foreign invaders to prevent infection. Without functional T cells, affected individuals develop repeated and persistent infections starting early in life. The infections result in slow growth and can be life-threatening; without effective treatment, most affected individuals live only into infancy or early childhood.
  • 635
  • 04 Jan 2021
Topic Review
Alzheimer Disease
Alzheimer disease is a degenerative disease of the brain that causes dementia, which is a gradual loss of memory, judgment, and ability to function. This disorder usually appears in people older than age 65, but less common forms of the disease appear earlier in adulthood.
  • 642
  • 24 Dec 2020
  • Page
  • of
  • 1746
Video Production Service