Topic Review
Coronavirus Disease 19 Pathogenesis
The coronavirus disease 19 (COVID-19) is caused by the highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected the global population despite socioeconomic status and amazed surveillance agencies for its incidence, mortality, and recovery rates.
  • 1.1K
  • 09 Nov 2020
Topic Review
Melatonin Regulate ROS and NO
Abiotic stress in plants is an increasingly common problem in agriculture, and thus, studies on plant treatments with specific compounds that may help to mitigate these effects have increased in recent years. Melatonin (MET) application and its role in mitigating the negative effects of abiotic stress in plants have become important in the last few years. MET, a derivative of tryptophan, is an important plant-related response molecule involved in the growth, development, and reproduction of plants, and the induction of different stress factors. In addition, MET plays a protective role against different abiotic stresses such as salinity, high/low temperature, high light, waterlogging, nutrient deficiency and stress combination by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Moreover, MET interacts with many signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO), and participates in a wide variety of physiological reactions. It is well known that NO produces S-nitrosylation and NO2-Tyr of important antioxidant-related proteins, with this being an important mechanism for maintaining the antioxidant capacity of the AsA/GSH cycle under nitro-oxidative conditions, as extensively reviewed here under different abiotic stress conditions.
  • 1.1K
  • 18 Nov 2020
Topic Review
Microbial Biostimulants
A microbial plant biostimulant, according to the Reg.UE 2019/1009, consists of a microorganism or a consortium of microorganisms able to stimulate plant nutrition processes independently of the product’s nutrient content with the sole aim of improving one or more of the following characteristics of the plant or the plant rhizosphere: (a) nutrient use efficiency; (b) tolerance to abiotic stress; (c) quality traits; (d) availability of confined nutrients in soil or rhizosphere. The allowed microorganisms are listed in the CMC-7 (Component Material Categories, number 7), which includes four different genera: Azotobacter spp., Mycorrhizal fungi, Rhizobium spp., and Azospirillum spp.
  • 1.1K
  • 22 Sep 2021
Topic Review
Phytochemical and Potential Properties of Seaweeds
Seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities.
  • 1.1K
  • 01 Aug 2022
Topic Review
Tissue Inhibitor of Metalloproteases 3
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of tissue inhibitor of metalloproteases 3 (TIMP-3) to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. 
  • 1.1K
  • 16 Mar 2022
Topic Review
Fluorescence Microscopy to Aanalyze Lignin
Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, fluorescence microscopy methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers through lignocellulosic biomass.
  • 1.1K
  • 21 Mar 2022
Topic Review
Mitochondrial VDAC1 as Therapeutic Target of Inflammation-Related Diseases
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. 
  • 1.1K
  • 26 Oct 2022
Topic Review
Broccoli
Broccoli is one of the jewels of the horticultural crops worldwide, belonging to the cruciferous family and very rich in key nutrients (vitamins, minerals, fibre, etc.) as well as a great group of bioactive compounds including carotenoids, phenolic compounds and glucosinolates. Among these phytochemicals, the most-studied in crucifers associated with disease prevention and wellbeing are glucosinolates [See also https://encyclopedia.pub/808]. The content of carotenoids, phenolic compounds and glucosinolates naturally present in broccoli, can be increased through the management and control of the agronomic and environmental conditions used for broccoli cultivation. In this sense, the study of the effects of pre-harvest factors in the concentration of health-promoting compounds in broccoli, as a new strategy to be implemented in the field, can be considered of great interest. This would help to determine the best agronomic practices and cultivation conditions to improve the content of the compounds of interest in broccoli, without compromising its overall quality.
  • 1.1K
  • 12 Oct 2020
Topic Review
Poultry Production in Developing Countries under COVID-19 Crisis
Poultry farming is a significant source of revenue generation for small farmers in developing countries. It plays a vital role in fulfilling the daily protein requirements of humans through meat and eggs consumption. The recently emerged pandemic Coronavirus Disease-19 (COVID-19) impacts the poultry production sector. Although the whole world is affected, these impacts may be more severe in developing countries due to their dependency on exporting necessary supplies such as feed, vaccines, drugs, and utensils. 
  • 1.1K
  • 18 Mar 2022
Topic Review
The Gene Elongation Mechanism
Gene elongation is a molecular mechanism consisting of an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. Several examples of genes with internal sequence repetitions are reported in literature; thus, gene elongation might have shaped the structures of many genes during the first steps of molecular and cellular evolution.  
  • 1.1K
  • 28 Oct 2020
  • Page
  • of
  • 1748
ScholarVision Creations