Topic Review
Ethylene
Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants’ growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants.
  • 1.1K
  • 09 Jul 2021
Topic Review
Human Endogenous Retrovirus in Neurodegeneration
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression leading to neurological diseases, inflammatory processes and neurodegeneration.
  • 1.1K
  • 04 Jun 2021
Topic Review
Hydrogen Sulfide
Hydrogen sulfide is a colorless gas with a characteristic smell like rotten eggs. It is flammable and corrosive at very high concentrations. It has been always considered a toxic molecule, but more recently, it has been proved it is a metabolite and signaling molecule in biological tissues that regulates many physiological processes.
  • 1.1K
  • 08 Nov 2020
Topic Review
Sphingolipids and DNA Damage Response
Sphingolipids are essential structural components of biological membranes that mediate a wide array of physiological functions such as inflammation, cell proliferation, survival, senescence, and death. An emerging body of evidence suggests that bioactive sphingolipids modulate the DNA damage response (DDR) induced by genotoxic stress and therein determine cell fate.
  • 1.1K
  • 16 Jul 2020
Topic Review
Antimicrobial Potential of Curcumin
Curcumin is a bioactive compound that is extracted from Curcuma longa and that is known for its antimicrobial properties. Curcuminoids are the main constituents of curcumin that exhibit antioxidant properties. It has a broad spectrum of antibacterial actions against a wide range of bacteria, even those resistant to antibiotics. Curcumin has been shown to be effective against the microorganisms that are responsible for surgical infections and implant-related bone infections, primarily Staphylococcus aureus and Escherichia coli. The efficacy of curcumin against Helicobacter pylori and Mycobacterium tuberculosis, alone or in combination with other classic antibiotics, is one of its most promising antibacterial effects. Curcumin is known to have antifungal action against numerous fungi that are responsible for a variety of infections, including dermatophytosis. Candidemia and candidiasis caused by Candida species have also been reported to be treated using curcumin. Life-threatening diseases and infections caused by viruses can be counteracted by curcumin, recognizing its antiviral potential.
  • 1.1K
  • 16 Mar 2022
Topic Review
Root Cultures in the Production of Valuable Compounds
Medicinal plants are an inevitable source of pharmaceutical drugs and most of the world population depends on these plants for health benefits. The increasing global demand for bioactive compounds from medicinal plants has posed a great threat to their existence due to overexploitation. Adventitious root and hairy root culture systems are an alternative approach to the conventional method for mass production of valuable compounds from medicinal plants owing to their rapid growth, biosynthetic and genetic stability.
  • 1.1K
  • 17 Mar 2022
Topic Review
Early Follicles
Early follicles' development, especially the activation of primordial follicles, is strictly modulated by a network of signaling pathways. Recent advance in ovarian physiology has been allowed the development of several therapies to improve reproductive outcomes by manipulating early folliculogenesis. Among these, in vitro activation (IVA) has been recently developed to extend the possibility of achieving genetically related offspring for patients with premature ovarian insufficiency and ovarian dysfunction. This method was established based on basic science studies of the intraovarian signaling pathways: the phosphoinositide 3-kinase (PI3K)/Akt and the Hippo signaling pathways. These two pathways were found to play crucial roles in folliculogenesis from the primordial follicle to the early antral follicle. Following the results of rodent experiments, IVA was implemented in clinical practice. There have been multiple recorded live births and ongoing pregnancies. Further investigations are essential to confirm the efficacy and safety of IVA before used widely in clinics.
  • 1.1K
  • 27 Apr 2021
Topic Review
Rapid Nontranscriptional Effects of Calcifediol and Calcitriol
Classically, a secosteroid hormone, vitamin D, has been implicated in calcium and phosphate homeostasis and has been associated with the pathogenesis of rickets and osteomalacia in patients with severe nutritional vitamin D deficiency. The spectrum of known vitamin D-mediated effects has been expanded in recent years. However, the mechanisms of how exactly this hormone elicits its biological function are still not fully understood. The interaction of this metabolite with the vitamin D receptor (VDR) and, subsequently, with the vitamin D-responsive element in the region of specific target genes leading to the transcription of genes whose protein products are involved in the traditional function of calcitriol (known as genomic actions). Moreover, in addition to these transcription-dependent mechanisms, it has been recognized that the biologically active form of vitamin D3, as well as its immediate precursor metabolite, calcifediol, initiate rapid, non-genomic actions through the membrane receptors that are bound as described for other steroid hormones. So far, among the best candidates responsible for mediating rapid membrane response to vitamin D metabolites are membrane-associated VDR (VDRm) and protein disulfide isomerase family A member 3 (Pdia3). 
  • 1.1K
  • 29 Jun 2022
Topic Review
Tagetes (Asteraceae)
The genus Tagetes, which includes plants known as ‘marigolds’, belongs to the Asteraceae family and contains more than 50 cultivated and wild species. Marigolds are native to America, but several species are naturalised in Africa, Asia, and Europe. Plants of the genus Tagetes are amongst the most widespread garden flowers worldwide. Marigolds are popular amongst gardeners due to their easy cultivation, wide adaptability, low demands for ecological and technological factors, and flower production throughout the year.
  • 1.1K
  • 21 Apr 2022
Topic Review
Basic Principles of Bioprocess Monitoring and Viability Determination
Bioprocesses involve multiple steps, including upstream processing, downstream processing and product formulation. Each of these steps must be monitored and regulated precisely, which requires suitable sensors that meet specific demands. Both the process itself and the process monitoring can be arranged differently. Likewise, this applies to the determination of viability, with each method possessing advantages and disadvantages.
  • 1.1K
  • 08 Feb 2023
  • Page
  • of
  • 1748
ScholarVision Creations