Topic Review
Colorectal Cancer Cells
The majority of deaths related to colorectal cancer (CRC) are associated with the metastatic process. Alternative therapeutic strategies, such as traditional folk remedies, deserve attention for their potential ability to attenuate the invasiveness of CRC cells. The aim of this study is to investigate the biological activity of brown Cuban propolis (CP) and its main component nemorosone (NEM) and to describe the molecular mechanism(s) by which they inhibit proliferation and metastatic potential of 2 CRC cell lines. CP and NEM significantly decreased cell viability and inhibited clonogenic capacity of CRC cells in a dose and time-dependent manner, by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Furthermore, CP and NEM downregulated BCL2 gene expression and upregulated the expression of the proapoptotic genes TP53 and BAX, with a consequent activation of caspase 3/7. They also attenuated cell migration and invasion by inhibiting MMP9 activity, increasing E-cadherin and decreasing β-catenin and vimentin expression, proteins involved in the epithelial–mesenchymal transition (EMT). NEM, besides displaying antiproliferative activity on CRC cells, is able to decrease their metastatic potential by modulating EMT-related molecules. These findings provide new insights about the antitumoral properties of CP, due to NEM content.  
  • 1.3K
  • 01 Nov 2020
Topic Review
Responses and Mechanisms of Plants against Drought Stress
Drought is an important abiotic stress factor limiting crop productivity worldwide and its impact is increasing with climate change. Regardless of the plant growth period, drought has a deadly and yield-reducing effect on the plant at every stage of development. As with many environmental stressors, drought-exposed plants trigger a series of molecular, biochemical, and physiological responses to overcome the effect of drought stress. Currently, researchers are trying to determine the complex functioning of drought stress response in plants with different approaches. Plants are more sensitive to drought stress during certain critical stages like germination, seedling formation, flowering, fertilization, and grain formation periods. Plants have high success in reducing the effects of drought stress in vegetative development periods with the activity of tolerance mechanisms. On the other hand, drought stress during the generative period can cause irreversible losses in yield. 
  • 1.3K
  • 04 Jan 2023
Topic Review
Wild Turkey
The wild turkey (Meleagris gallopavo) is an upland ground bird native to North America, one of two extant species of turkey, and the heaviest member of the order Galliformes. It is the ancestor to the domestic turkey, which was originally derived from a southern Mexican subspecies of wild turkey (not the related ocellated turkey). Although native to North America, the turkey probably got its name from the domesticated variety being imported to Britain in ships coming from the Levant via Spain. The British at the time therefore associated the wild turkey with the country Turkey and the name prevails. An alternative theory posits that another bird, a guinea fowl native to Madagascar introduced to England by Turkish merchants, was the original source, and that the term was then transferred to the New World bird by English colonizers with knowledge of the previous species.
  • 1.3K
  • 16 Nov 2022
Topic Review
Cytotoxicity and Phagocytosis in Immunity
The immune system has evolved to protect organisms from infections caused by bacteria, viruses, and parasitic pathogens. In addition, it provides regenerative capacities, tissue maintenance, and self/non-self recognition of foreign tissues. In general, innate immunity is a fast and non-specific response associated with the presence of humoral and cellular elements. By contrast, adaptive immunity uses the induction of specialized cells such as B and T lymphocytes and molecules including the major histocompatibility complex (MHC), B-cell receptors (BCR), T-cell receptors (TCR), immunoglobulins (Ig), and antibodies to confer immunological memory and very high specificity thus fighting against a previously recognized infection. Both kinds of immune responses rely on two main cellular activities which are phagocytosis and cytotoxicity. These cellular immune mechanisms have been found at the earliest evolutionary stages of multicellular animals and diversified into a wide heterogeneous repertoire of effector cells through evolution.
  • 1.3K
  • 04 Aug 2021
Topic Review
Plant Non-Coding RNAs
Plant non coding RNA review paper highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focussing on their origin, biogenesis, mode of actions, and their fundamental roles in plant response to abiotic stresses.
  • 1.3K
  • 17 Dec 2020
Topic Review
Bioactivities of Red Pitaya Fruits
Pitahaya, or the pitaya fruit, is a well-known member of the Cactaceae family and is widely cultivated in tropical and subtropical areas. Pitaya fruit is classified based on the colour of pulp and peel, namely white-pulp with pink peel pitaya (Hylocereus undatus), red-pulp with pink peel pitaya (Hylocereus polyrhizus) and white-pulp with yellow skin (Hylocereus megulanthus).
  • 1.3K
  • 22 Mar 2022
Topic Review
Polyphenols and omega-3 as nutriceuticals
The adequate combination of the well-recognized individual nutraceutical properties of polyphenols and omega-3 polyunsaturated fatty acids from fish oils (eicosapentaenoic and docosahexaenoic acids), particularlly their single antioxidant and anti-inflammatory properties, may offer a powerful tool for the design of successfully nutritional interventions for the prevention and palliation of a plethora of human diseases, often diet-related, whose etiology and progression are characterized by redox homeostasis disturbances and a low-grade of chronic inflammation. However, the certain mechanisms behind their biological activities, in vivo interaction (both between them and other food compounds), and their optimal doses and consumption are not well-known yet. Therefore, we review here the recent accumulated evidence in both preclinical and clinical trials, of the cooperative action between polyphenols and fish oils as nutraceuticals on human health, focusing on the mechanisms and pathways described and the effects reported. The final objective is to provide useful information for developing effective strategies of personalized nutrition based on the combined used of these bioactive food compounds.
  • 1.3K
  • 11 Jul 2021
Topic Review
Diatoms for Carbon Sequestration
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. 
  • 1.3K
  • 09 Jul 2021
Topic Review
Seaweed Phenolics
Seaweed, also referred to as macroalgae, have been studied as potential aquafeed ingredients since the late 1970s but have been implemented as a poultry feed supplement since the 1950s. Seaweed phenolics provide alternative ingredients that are complementary to synthetic additives used in aquaculture, possessing a broad spectrum of bioactive properties such as antimicrobial, antiviral, antifungal, anti-stress, antioxidant, anti-inflammatory, immunostimulant, and appetite stimulation. Also, their antioxidant properties retard lipid oxidation and preserve feed quality improving shelf life. 
  • 1.3K
  • 19 Jul 2022
Topic Review
Insect Odorant-Binding Proteins
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role”, OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated.
  • 1.3K
  • 13 Apr 2021
  • Page
  • of
  • 1747
Video Production Service