Topic Review
Grapevine Relevance and Grapevine in near East Origins
The origins of the main cultivar groups of Vitis vinifera, their relationships with wild grapevine populations, and the use of other Vitaceae are relevant issues for the improvement and conservation of Vitis diversity. Morphometric studies, domestication indices, multivariate analyses, and Bayesian hypothesis testing have been used. 
  • 339
  • 28 Jul 2023
Topic Review
Eumelanin in the Living World
A lot of still unexplained aspects characterize eumelanin, a macromolecule able to play in living organisms several, sometimes conflicting, roles. This contribution aims  to emphasize the unique characteristics and the consequent unusual behaviors of a molecule that in an evolutionary context survived natural selection and still holds the main chemical/physical features detected in fossils dating to the late Carboniferous. 
  • 278
  • 29 May 2023
Topic Review
Omics Studies on Botanical Carnivory
Different high-throughput omics approaches, including genomics, transcriptomics, metagenomics, proteomics, and metabolomics have been implemented to study the molecular mechanisms of botanical carnivory. Extensive omics studies have been conducted to understand the molecular evolution of carnivory by studying the genomes and transcriptomes of Lentibulariaceae and Droseraceae family members. The candidate genes responsible for the development of the carnivory pitcher organ of Nepenthes species are revealed by transcriptomics studies. Another focus of the field is molecular physiology, in which the compositions of metabolites and proteins, especially the digestive enzymes and their dynamics in pitcher tissues and fluids, respectively, were investigated via metabolomics and proteomics informed by transcriptomics approaches.
  • 245
  • 05 May 2023
Topic Review
Volvocine regA Gene Model for Cellular Differentiation Evolution
A group of green algae in the order of Volvocales provides an ideal model system for studying the transition from unicellular to differentiated multicellularity. This group—known as the volvocine algae—evolved multicellularity relatively recently (~240 million years ago) and contains extant relatives that span a range of complexities from unicellularity, to undifferentiated multicellularity, to differentiated multicellularity. The regA-like gene family within the volvocine algae serves as a model for the evolution of the genetic basis of cellular differentiation.
  • 248
  • 04 May 2023
Topic Review
Responses of Humans to Space Flight in LEO
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. 
  • 240
  • 30 Mar 2023
Topic Review
The Role of Commensal and other Non-Pathogenic Bacteria
Not only pathogenic bacteria are reservoirs of antibiotic resistance and virulence genes. Opportunistic pathogenic bacteria, commensal bacteria, and mutualistic bacteria (here named non-pathogenic for simplification) may also carry resistance and virulence genes. However, contrary to pathogenic strains, which are the target of the immune system, non-pathogenic bacteria can colonize hosts for prolonged periods because hosts do not need to be rid of them. Thus, the basic reproductive number of a non-pathogenic bacterial strain, a measure of the strain’s fitness and denoted as R0, is likely to be much higher than one. That is, the expected number of colonized hosts by a single colonized host in a population not yet colonized by that strain is higher than one, which implies that this strain can spread exponentially among hosts. This spread has peculiar consequences for the spread of virulence and resistance genes. For example, computer models that simulate the spread of these genes have shown that their diversities should correlate positively throughout microbiomes. Bioinformatics analysis with real data corroborates this expectation.
  • 757
  • 07 Feb 2023
Topic Review
Dinosaurs
According to Britannica, dinosaurs are described as “Triceratops, contemporary birds, their most recent common ancestor and all of their descendants.” However, for biologists, it could be simpler to picture dinosaurs as reptiles with hind limbs held erect beneath the trunk, similar to how mammals’ hind limbs are held.
  • 902
  • 06 Jan 2023
Topic Review
Seeking Sense in the Hox Gene Cluster
The Hox gene cluster, responsible for patterning of the head–tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species.
  • 878
  • 20 Dec 2022
Topic Review
Inclusive Fitness
In evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964. An individual's own child, who carries one half of the individual's genes, is defined as one offspring equivalent. A sibling's child, who will carry one-quarter of the individual's genes, is 1/2 offspring equivalent. Similarly, a cousin's child, who has 1/16 of the individual's genes, is 1/8 offspring equivalent. From the gene's point of view, evolutionary success ultimately depends on leaving behind the maximum number of copies of itself in the population. Prior to Hamilton's work, it was generally assumed that genes only achieved this through the number of viable offspring produced by the individual organism they occupied. However, this overlooked a wider consideration of a gene's success, most clearly in the case of the social insects where the vast majority of individuals do not produce (their own) offspring.
  • 911
  • 28 Nov 2022
Topic Review
Origin and Terrestrialization of Arthropods
Arthropods, the most diverse form of macroscopic life in the history of the Earth, originated in the sea. Since the early Cambrian, at least ~518 million years ago, these animals have dominated the oceans of the world. By the Silurian–Devonian, the fossil record attests to arthropods becoming the first animals to colonize land, However, a growing body of molecular dating and palaeontological evidence suggests that the three major terrestrial arthropod groups (myriapods, hexapods, and arachnids), as well as vascular plants, may have invaded land as early as the Cambrian–Ordovician. These dates precede the oldest fossil evidence of those groups and suggest an unrecorded continental “Cambrian explosion” a hundred million years prior to the formation of early complex terrestrial ecosystems in the Silurian–Devonian.
  • 1.5K
  • 04 Nov 2022
  • Page
  • of
  • 7