Topic Review
Particle-Bound Mercury Characterization
Particulate Bound Hg (PBM) consists of all airborne particulate containing Hg, including both stable condensed and gaseous forms adsorbed on atmospheric particulate matter (PM); it is operationally sampled and quantified by pulling air through a glass fiber or a quartz filter. PBM usually includes all those particles with a diameter <2.5 μm, even if its characterization depends on the pore size of the filter used for its collection. The accurate dimensional characterization is then essential to estimate the dry deposition of PBM, as well as any other particulate pollutant; the particles diameters directly influence gravitational sedimentation and the PBM residence time in the atmosphere. In addition, PBM chemical speciation, as well as for the other Hg forms, is fundamental to understand PBM bioavailability and therefore the effects on human .
  • 993
  • 05 Jul 2021
Topic Review
Pyrolysis of Technogenic-Redeposited Coal-Bearing Rocks
Hydrocarbon products formed under high-temperature and low-temperature pyrolysis of coal-bearing rocks were studied by using a chromatography-mass spectrometer GCMS-QP2010NC Plus (made by Shimadzu Company). The average temperature of low-temperature natural pyrolysis does not exceed 120°C, and its average speed is approximately 2 m/year. In this case, three pyrolysis zones gradually built metamorphic rock mass (from bottom to top) are clearly established: heating (focal) activated and enriched. The average temperature of high-temperature pyrolysis reaches 850°C, and its average speed is approximately 20 m/year. Unlike low-temperature pyrolysis, high-temperature pyrolysis is accompanied by the presence of two major zones (from bottom to top): pyrogenic (focal) and enriched (coke). The chemical composition of the enriched pyrolysis zone was studied in detail. It has been established that hydrocarbon compounds in samples of the pyrolysis zone are presented by six classes: asphaltic-resinous substances; polycyclic aromatic hydrocarbons, heterocyclic compounds, organic sulphur compounds; pyrolytic hydrocarbon and heavy hydrocarbon residue. Quantitative content of hydrocarbon compounds in the analyzed samples varies from 0.35% to 41.88%.   Based on the materials of fieldwork, we created a video film that can be seen on the website https://youtu.be/Tqs6YiKfDdE
  • 877
  • 29 Oct 2020
Topic Review
Geochemical Modeling Applications
The geochemical computer model is an important innovation that exponentially evolved in the last decades, and that now plays a vital role in several areas of study, ranging from developing new models for surface complexation, reactive transport models, or the generation of thermodynamic data used to simulate or predict solubility reactions. An important application of geochemical modeling involves supporting the explanation or characterization of engineering systems related to waste management, wastewater reuse, evaluation of water quality from a landfill, metal speciation within soils in industrial areas, new technologies or process for waste treatment, and even the evaluation of the potential to use solid wastes in carbon sequestering processes.
  • 876
  • 03 Aug 2021
Topic Review
Microbially Induced Carbonate Precipitation
 Microbially induced carbonate precipitation (MICP) is a promising technology for solidifying sandy soil, ground improvement, repairing concrete cracks, and remediation of polluted land. By solidifying sand into soil capable of growing shrubs, MICP can facilitate peak and neutralization of CO2 emissions because each square meter of shrub can absorb 253.1 grams of CO2 per year.
  • 799
  • 01 Dec 2021
Topic Review
The BrIdge voLcanic LIdar—BILLI
Volcanologists have demonstrated that carbon dioxide (CO2) fluxes are precursors of volcanic eruptions. Controlling volcanic gases and, in particular, the CO2 flux, is technically challenging, but we can retrieve useful information from magmatic/geological process studies for the mitigation of volcanic hazards including air traffic security. Existing techniques used to probe volcanic gas fluxes have severe limitations such as the requirement of near-vent in situ measurements, which is unsafe for operators and deleterious for equipment. In order to overcome these limitations, a novel range-resolved DIAL-Lidar (Differential Absorption Light Detection and Ranging) has been developed as part of the ERC (European Research Council) Project “BRIDGE”, for sensitive, remote, and safe real-time CO2 observations.
  • 771
  • 09 Oct 2020
Topic Review
Impact of Nanoparticles on Plants under Drought Stress
Drought is a chronic abiotic stress affecting crop growth and development, accounting for approximately 70% of the potential loss of global crop yield and productivity. Drought hinders agriculture and forestry worldwide, due to very little rainfall or significant differences in moisture. The current trends of global warming are causing a major impact on the moisture levels of the soil and the environment, and are increasing the intensity of droughts. Plants are subjected to various stresses during their growth, and the morphology of plants is affected at all stages of development due to drought stress, with productivity losses expected to reach 30% globally by 2025. 
  • 766
  • 22 Nov 2022
Topic Review
Global Marine Dissolved Organic Matter
Marine dissolved organic matter (DOM) holds ~660 billion metric tons of carbon, making it one of Earth’s major carbon reservoirs that is exchangeable with the atmosphere on annual to millennial time scales. The global ocean scale dynamics of the pool have become better illuminated over the past few decades. 
  • 717
  • 15 Sep 2021
Topic Review
Mineralizing Fluids at Porphyry Deposits of Cu−Mo−Au System
The porphyry type of hydrothermal mineral deposits is of paramount economic importance because deposits of this type host much of the world’s reserves of Cu, Mo, and Re, as well as much Re and remarkable reserves of critical elements such as Ag, Pd, Te, Se, Bi, Zn, and Pb. Porphyry deposits are conventionally classified into mineralogical–geochemical types according to their dominant valuable components. The most economically important porphyry-type deposits are those of the Cu (Au), Cu–Mo (Au), Mo, and Au types.
  • 716
  • 05 May 2022
Topic Review
Diamond-Bearing Ophiolite
Ophiolites are fragments of ancient oceanic crust and upper mantle, which is created at ocean spreading ridges and then emplaced on land. Ophiolite-hosted diamond discovered in ophiolitic peridotite and chromitite is considered to be a new type that has been named an ophiolite-type by Yang et al., in 2011. 
  • 669
  • 22 Nov 2021
Topic Review
Eudialyte-group minerals (EGMs)
       Eudialyte-group minerals (EGMs) are typical components of some kinds of agpaitic igneous rocks and related pegmatites and metasomatic assemblages. Crystal-chemical features of these minerals are important indicators reflecting conditions of their formation (pressure, temperature, fugacity of oxygen and volatile species, and activity of non-coherent elements.        A unique crystal-chemical diversity of EGMs is determined by a wide variability of their chemical composition involving more than 30 main elements and complex mechanisms of homovalent, heterovalent, and, especially, blocky isomorphism involving groups of atoms having different valency and coordination. The uniqueness of these minerals lies in the fact that they exhibit ability to blocky isomorphism at several sites of high-force-strength cations belonging to the framework and at numerous sites of extra-framework cations and anions.
  • 639
  • 26 Aug 2020
  • Page
  • of
  • 5