Topic Review
Paludiculture in Latvia
Global climate change impact has increased in recent decades and put urgency on implementing effective climate change mitigation (CCM) activities. Rewetting of drained peatlands is an acknowledged measure to reduce GHG emissions from organic soils in the agriculture and land use sectors. Under waterlogged conditions, decomposition of organic matter in peat decreases, and emissions of CO2 are reduced. Thus, the soil carbon stock is saved, and wet management of the site reactivates carbon sequestration. To reach CCM targets, the first rewetting and paludiculture trials have been implemented in Latvia.
  • 227
  • 19 Dec 2023
Topic Review
Parthenogenesis in Fulgoromorpha and Cicadomorpha
Insects are renowned for their remarkable diversity of reproductive modes. Among these, the largest non-holometabolous order, Hemiptera, stands out with one of the most diversified arrays of parthenogenesis modes observed among insects. 
  • 385
  • 27 Oct 2023
Topic Review
Participation of Marginalised Groups in Climate Change Governance
For many of the world’s poor people, adaptation to climate change is not a choice but a reality. Existing evidence suggests that the poor, particularly those in the developing world, are the most vulnerable to any changes in climate variability and change. Climate change is having devastating impacts on the livelihood-supporting systems of many poor and rural households in South Africa. These changes are not only affecting the biophysical elements of the natural resource base, but they are also greatly compromising the ability of many small-scale farmers, especially women, who, in most cases, lack any form of productive assets to deploy so as to minimise the impacts of climate change.
  • 583
  • 23 Jun 2022
Topic Review
Particle-Bound Mercury Characterization
Particulate Bound Hg (PBM) consists of all airborne particulate containing Hg, including both stable condensed and gaseous forms adsorbed on atmospheric particulate matter (PM); it is operationally sampled and quantified by pulling air through a glass fiber or a quartz filter. PBM usually includes all those particles with a diameter <2.5 μm, even if its characterization depends on the pore size of the filter used for its collection. The accurate dimensional characterization is then essential to estimate the dry deposition of PBM, as well as any other particulate pollutant; the particles diameters directly influence gravitational sedimentation and the PBM residence time in the atmosphere. In addition, PBM chemical speciation, as well as for the other Hg forms, is fundamental to understand PBM bioavailability and therefore the effects on human .
  • 1.1K
  • 05 Jul 2021
Topic Review
Particulate Air Pollution and Risk of Neuropsychiatric Outcomes
There is evidence that the impact of particle pollution on the brain, the portals of entry, the neural damage mechanisms, and ultimately the neurological and psychiatric outcomes statistically associated with exposures. PM pollution comes from natural and anthropogenic sources such as fossil fuel combustion, engineered nanoparticles (NP ≤ 100 nm), wildfires, and wood burning. We are all constantly exposed during normal daily activities to some level of particle pollution of various sizes—PM2.5 (≤2.5 µm), ultrafine PM (UFP ≤ 100 nm), or NPs. Inhalation, ingestion, and dermal absorption are key portals of entry. 
  • 392
  • 16 Nov 2021
Topic Review
Particulate and Floating Pollutants in the Oceans
The Earth’s oceans are the final resting place of anthropogenic residues, mainly plastics, metals, rubber, and fabrics, in order of decreasing abundance. After degradation resulted by UV rays atack, mechanical and chemical degradation, they tend to decant and deposit over the ocean floor. Most of these finaly assume fragmented or particulate forms, becoming colonized by marine microorganisms and later interacting with macroorganisms, leading to potential problems with marine life and the ecosystem. Rapid biodegradation of the polluting materials is still not possible, as a result of site contaminants atraction and accumulation and harmful by-products release.
  • 510
  • 28 Jun 2022
Topic Review
Particulate Matter Emissions from Aircraft
Particulate matter emissions from aircraft engines contribute to ambient concentrations of ultrafine particles in and around airports together with other combustion sources including road traffic. The impact of emissions on ambient concentrations from an airport, for which aircraft engine is a main source, differs from airport to airport due to the different relative contributions of other sources such as road traffic, and due to pollutant mix differences, chemical characteristics and size distribution. Particulate matter, particularly the ultrafine component made up of small particles with an aerodynamic diameter of less than 0.1 µm, is widely considered a health hazard. Aircraft gas turbine engines result in direct emissions of “non-volatile” (nvPM), also described as black carbon (BC) “soot” emissions. In addition to local air quality impacts, particles emitted from aircraft engines can affect climate and cloudiness in a number of ways. There are several on-going projects such as AVIATOR and ACACIA, that are taking measurements, linking these to modelling and assessing the particulate impacts on local air quality and climate.
  • 534
  • 30 Sep 2022
Topic Review
Passenger Cars Driven on Hilly Roads in Austria
Previous studies of road or railway infrastructures have shown that traffic emissions outweigh the environmental impacts of the product stage and construction stage over the entire life cycle. Traffic usage is therefore the main emitter over the life cycle (A1–C4). Due to the small number of sustainability assessment systems, the question of how to consider traffic emissions in detail in an integral life cycle assessment has arisen.
  • 225
  • 01 Feb 2024
Topic Review
Past and Future of Permafrost Monitoring
Changes in the thermal state of permafrost under the influence of climatic variations have occurred over the years, but have not reached their maximum. This circumstance significantly increases the risks in fuel and energy complex stability. Everywhere in the Russian Arctic, there is a loss of the bearing capacity in the bases of buildings and structures. The vast majority of the permafrost data are outdated and need to be actualized in the formation of a unified monitoring system. The development of the fuel and energy complex in the Russian Arctic complements the impact of background climate change. As a result of the joint effect of climate warming and large-scale man-made impacts on permafrost, a cumulative effect arises. Its consequences critically accelerate the loss of the stability of frozen foundations, which leads to major accidents of natural–technical systems.
  • 451
  • 26 May 2022
Topic Review
Past Developments of Carpathian Forests
The Carpathians are the second largest mountain range in Europe and provide multiple ecosystem services of enormous regional importance. The Carpathians belong to seven Central and Eastern European countries (Czech Republic, Slovakia, Poland, Hungary, Ukraine, Romania, and Serbia), whose share of forest land is among the lowest in Europe (27%). With a total area of 9.92 million hectares, Carpathian forests constitute over 70% of the total forested land in Slovakia and Romania, with Romania alone harboring more than 45% of all Carpathian forests. Most of the Carpathian forests are dominated by European beech (Fagus sylvatica), Norway spruce (Picea abies), oak (Quercus robur, Quercus petraea), and silver fir (Abies alba) stands, covering over 70% of the altitudinal range (with the highest point being Gerlachovský štít, 2655 m a.s.l., in the Slovakian Tatra Mountains). The Carpathian Mountains were characterized in terms of their forests in the period starting from Holocene deglaciation. Climate fluctuations and human activities have led to substantial changes in forest systems, and anthropogenic activities, such as logging, fire activities, and grazing, have shaped the distribution and structure of present-day Carpathian forests. The rapid climate change in recent decades adds uncertainty to the future development of these forest systems.
  • 271
  • 17 Jan 2024
  • Page
  • of
  • 272
ScholarVision Creations